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Test-Time Adaptation (TTA)

TTA aims to online adapt a pre-trained model to unlabeled and changing environments
during inference, without accessing source data.
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Key Challenge in TTA — Computational Efficiency
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Key Challenge in TTA — Computational Efficiency
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How can we adapt efficiently?




Key Insight — Selective Transfer of Source Knowledge

* During source-to-target transfer, not all source-learned features are beneficial, some
can even degrade target performance.
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* During source-to-target transfer, not all source-learned features are beneficial, some
can even degrade target performance.

How removing certain source feature channels affects performance?
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Key Insight — Selective Transfer of Source Knowledge

* During source-to-target transfer, not all source-learned features are beneficial, some
can even degrade target performance.

How removing certain source feature channels affects performance?
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Key Contribution

* Inspired by this insight, we propose that TTA should focus on the helpful parts of the
source model while ignoring the harmful ones.

* This not only reduces adaptation difficulty, but also improves adaptation efficiency.
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Related Works — Computational Efficiency
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Data-level (e.g., EATA: Niu et al. 2022)

e Filter uncertain samples for selective updates
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Scheduling-level (e.g., TinyTTA: Jia et al. 2024)

e Early-exit inference routing



Related Works — Computational Efficiency
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Methodology

Make test-time adaptation more efficient by updating only the useful parts of the model
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Methodology

Weighted sparsity loss
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Reactivate channels to
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Experiments — Settings

Synthetic Benchmark (i.e., Cityscapes = Cityscapes-C, UAVDT - UAVDT-C)

Motion blur Contrast Defocus blur

Real-world Benchmark (i.e., Cityscapes - ACDC)

Night Rain



Experiments — Benchmark Results
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Experiments — Ablation and Visualization
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Experiments — Ablation and Visualization
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Experiments — Ablation and Visualization

® Snow o
@® Motion e ® ®
@ Defocus . % .‘ 4 Pe o
® Contrast o ¢ . e * a0 s
__ od® © & °. :;?..30" “ %
;. e ® '.q..: '.‘o.:f?o &
£ddp ﬁreg l‘.J..oTin]g Wins SCR A\"g AI:LOPS,L f & ;@% f ® @ :..i_\_.a. B; e * ..,@
o * °% % :'7'9’.. " ® ® @
45 0.0% S AT g ol 8 s
/ ][].9 {].U{Ea & a9 ..) ;..; ® .%' f .ﬁ o “: ..@
v v 8.8 10.2% P e P e, oee $
s/ / v 10.5 10.5% o o° Bes ® o o * @
ol v 09 109% L R A
._ g ® o 4
£ £ & 112 10.7% P AR A Tk Y
v v /v /7 114 104% “'@ L o :...;:‘ .
. “.. .4' ‘ = ’.3; & !. @i.;- °
Framework Component Ablation o ',,'\fs;_\... © e
® g _
% . Y
%

T-SNE of Invariant Channels
During Final Round of Domain-wise Adaptation



Experiments — Ablation and Visualization
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Experiments — Ablation and Visualization
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Thanks for your attention

Poster Session: 14 Jun (today), 10:30 a.m. CDT — 12:30 p.m,
ExHall D Poster #419

Contact me at kunyuwang@mail.ustc.edu.cn.
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Q&A Session

1. Why did you choose to operate on BN layers?

2. How exactly are the channels pruned? Why does setting them to zero work?

3. Would lightweight detectors like YOLO still have redundant channels?

4. What about detectors without BN layers, like ViT or DETR?

5. How did you choose the hyper-parameters?

6. In your exploratory experiment, how did you identify “sensitive” channels without labels?

7. Are you assuming that the pre-trained model works reasonably well in the target domain?

8. How is your method different from standard test-time pruning or dynamic sparsity methods?

9. How often do you prune during test-time adaptation? Is it done every step?



Q&A Session

10. Could the method be unstable if the sensitivity scores are noisy or unreliable?

11. Isyour pruning strategy task-agnostic? Could it be applied to classification or segmentation?
12. Does pruning ever hurt the performance on easy or clean target samples?

13. Could you incorporate uncertainty or confidence scores into the pruning decision?

14, Why do you not retrain or fine-tune the pruned model? Would that help?



