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Online

Resource-constrained

Test-time unlabeled streaming data under domain shifts

How can we adapt efficiently?



Key Insight – Selective Transfer of Source Knowledge
• During source-to-target transfer, not all source-learned features are beneficial, some 

can even degrade target performance.
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Key Insight – Selective Transfer of Source Knowledge
• During source-to-target transfer, not all source-learned features are beneficial, some 

can even degrade target performance.

Their removal hurts 
both source and 
target performance.

Their removal hurts 
the source but helps 
the target.



Key Contribution
• Inspired by this insight, we propose that TTA should focus on the helpful parts of the 

source model while ignoring the harmful ones. 

• This not only reduces adaptation difficulty, but also improves adaptation efficiency.



Related Works — Computational Efficiency

Test-time unlabeled streaming data under domain shifts



Related Works — Computational Efficiency

Test-time unlabeled streaming data under domain shifts

• Filter uncertain samples for selective updates



Related Works — Computational Efficiency

Test-time unlabeled streaming data under domain shifts

• Filter uncertain samples for selective updates • Update minimal, lightweight parameters 



Related Works — Computational Efficiency

Test-time unlabeled streaming data under domain shifts

• Filter uncertain samples for selective updates • Update minimal, lightweight parameters 

• Early-exit inference routing



Related Works — Computational Efficiency

Test-time unlabeled streaming data under domain shifts

• Update minimal, lightweight parameters 

• Early-exit inference routing • Prune domain-sensitive feature channels



Methodology
Make test-time adaptation more efficient by updating only the useful parts of the model 
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Experiments — Settings



Experiments — Benchmark Results

10-Round Average

mAP@50 (%) and FLOPs (G)
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Experiments — Ablation and Visualization

with Full Channel Update, No pruning

Differentiated by the Learned Channel Mask



Experiments — Ablation and Visualization

Prune 
Channels

Output Filter Size 
Reduce

Input Filter Size 
Reduce



Thanks for your attention

Contact me at kunyuwang@mail.ustc.edu.cn.

Poster Session: 14 Jun (today), 10:30 a.m. CDT — 12:30 p.m, 
ExHall D Poster #419

mailto:zhngjizh@gmail.com
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