

Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning

Kunyu Wang, Xueyang Fu, Xin Lu, Chengjie Ge, Chengzhi Cao, Wei Zhai, Zheng-Jun Zha†

University of Science and Technology of China

Resource-constrained

Resource-constrained

Test-time unlabeled streaming data under domain shifts

Resource-constrained

Test-time unlabeled streaming data under domain shifts

How can we adapt efficiently?

Key Insight – Selective Transfer of Source Knowledge

• During source-to-target transfer, **not all source-learned features are beneficial**, some can even degrade target performance.

Key Insight – Selective Transfer of Source Knowledge

 During source-to-target transfer, not all source-learned features are beneficial, some can even degrade target performance.

How removing certain source feature channels affects performance?

Key Insight – Selective Transfer of Source Knowledge

 During source-to-target transfer, not all source-learned features are beneficial, some can even degrade target performance.

How removing certain source feature channels affects performance?

Key Contribution

- Inspired by this insight, we propose that TTA should focus on the helpful parts of the source model while ignoring the harmful ones.
- This not only reduces adaptation difficulty, but also improves adaptation efficiency.

Resource-constrained

Test-time unlabeled streaming data under domain shifts

Data-level (e.g., EATA: Niu et al. 2022)

Filter uncertain samples for selective updates

Data-level (e.g., EATA: Niu et al. 2022)

• Filter uncertain samples for selective updates

Parameter-level (e.g., EcoTTA: Song et al. 2023)

Update minimal, lightweight parameters

Data-level (e.g., EATA: Niu et al. 2022)

• Filter uncertain samples for selective updates

Parameter-level (e.g., EcoTTA: Song et al. 2023)

• Update minimal, lightweight parameters

Scheduling-level (e.g., TinyTTA: Jia et al. 2024)

Early-exit inference routing

Data-level (e.g., EATA: Niu et al. 2022)

• Filter uncertain samples for selective updates

Parameter-level (e.g., EcoTTA: Song et al. 2023)

Update minimal, lightweight parameters

Scheduling-level (e.g., TinyTTA: Jia et al. 2024)

Early-exit inference routing

Model structure-level (This work)

Prune domain-sensitive feature channels

Make test-time adaptation more efficient by updating only the useful parts of the model

Weighted sparsity loss

Prune channels based on pre-defined threshold

Reactivate channels to reassess their utility in different domains

Experiments — Settings

Synthetic Benchmark (i.e., Cityscapes → Cityscapes-C, UAVDT → UAVDT-C)

Fog

Motion blur

Contrast

Defocus blur

Real-world Benchmark (i.e., Cityscapes → ACDC)

Fog

Night

Rain

Snow

Experiments — Benchmark Results

10-Round Average

mAP@50 (%) and FLOPs (G)

\mathcal{L}_{adp}	\mathcal{L}_{reg}	$\omega_{ m img}$	$\omega_{ m ins}$	SCR	Avg	∆FLOPs↓
					4.5	0.0%
1					10.9	0.0%
1	1				8.8	10.2%
1	1	1			10.5	10.5%
1	1		1		9.9	10.9%
1	1	1	1		11.2	10.7%
1	1	1	1	1	11.4	10.4%

Framework Component Ablation

\mathcal{L}_{adp}	\mathcal{L}_{reg}	$\omega_{ m img}$	$\omega_{ m ins}$	SCR	Avg	∆FLOPs↓
					4.5	0.0%
1					10.9	0.0%
1	/				8.8	10.2%
1	1	1			10.5	10.5%
1	1		1		9.9	10.9%
1	1	1	1		11.2	10.7%
/	/	1	/	/	11.4	10.4%

Framework Component Ablation

\mathcal{L}_{adp}	\mathcal{L}_{reg}	$\omega_{ m img}$	$\omega_{ m ins}$	SCR	Avg	∆FLOPs↓
					4.5	0.0%
1					10.9	0.0%
1	1				8.8	10.2%
1	1	1			10.5	10.5%
1	1		1		9.9	10.9%
/	/	/	1		11.2	10.7%
/	/	/	/	/	11.4	10.4%

Framework Component Ablation

\mathcal{L}_{adp}	\mathcal{L}_{reg}	$\omega_{ m img}$	$\omega_{ m ins}$	SCR	Avg	∆FLOPs↓
					4.5	0.0%
1					10.9	0.0%
1	1				8.8	10.2%
1	1	1			10.5	10.5%
1	1		1		9.9	10.9%
1	1	1	1		11.2	10.7%
1	1	/	1	1	11.4	10.4%

Framework Component Ablation

T-SNE of Invariant Channels

During Final Round of Domain-wise Adaptation

T-SNE of Feature Channels on a Certain Target Domain with Full Channel Update, No pruning during Final Round of Adaptation

Differentiated by the Learned Channel Mask

Thanks for your attention

Poster Session: 14 Jun (today), 10:30 a.m. CDT — 12:30 p.m, ExHall D Poster #419

Contact me at kunyuwang@mail.ustc.edu.cn.

Q&A Session

- 1. Why did you choose to operate on BN layers?
- 2. How exactly are the channels pruned? Why does setting them to zero work?
- 3. Would lightweight detectors like YOLO still have redundant channels?
- 4. What about detectors without BN layers, like ViT or DETR?
- 5. How did you choose the hyper-parameters?
- 6. In your exploratory experiment, how did you identify "sensitive" channels without labels?
- 7. Are you assuming that the pre-trained model works reasonably well in the target domain?
- 8. How is your method different from standard test-time pruning or dynamic sparsity methods?
- 9. How often do you prune during test-time adaptation? Is it done every step?

Q&A Session

- 10 Could the method be unstable if the sensitivity scores are noisy or unreliable?
- 11 \ Is your pruning strategy task-agnostic? Could it be applied to classification or segmentation?
- 12. Does pruning ever hurt the performance on easy or clean target samples?
- 13 Could you incorporate uncertainty or confidence scores into the pruning decision?
- 14. Why do you not retrain or fine-tune the pruned model? Would that help?