

NaVid: Video-based VLM Plans the Next Step for Vision-and-Language Navigation

Jiazhao Zhang*, Kunyu Wang*, Rongtao Xu*, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu, Zhizheng Zhang†, He Wang†

GALBOT

Vision-and-Language Navigation (VLN)

Given free-form instruction, the robot is required to follow the instruction to navigate in the unseen environments.

"Leave the bedroom, and enter the kitchen. Walk forward and take a left at the couch. Stop in fornt of the window"

You are in a bedroom. Turn around to the left until you see a door leading out into a hallway, go through it. Hang a right and walk between the island and the couch on your left. When you are between the second and third chairs for the island stop.

Key Insight 1 – VLM-Driven Real-World VLN

 Leverage the power of <u>foundational VLMs</u> to extend VLN to <u>real-world</u> applications, using <u>pretrained</u> large model, and <u>co-tuning</u> with <u>web-based data</u>.

510k Navigation Data + 763k Web-based Data → Total 1.2M training data

Key Insight 2 – Video-Based VLN Agent

 Navigate in a <u>human-like</u> manner, relying <u>solely</u> on real-time <u>video streams</u> from a monocular camera, <u>without the need for maps, odometers, or depth inputs</u>.

Walk out of the bedroom, turn right, stop before the stairs.

Walk out of the bedroom

Turn right

Stop before the stairs

On-the-fly Video as Input

Pipeline

Text:

What is large language model?

Video:

Image:

Navigation:

Pipeline

Data collection

We collect the navigation data based on R2R dataset training-split on VLN-CE simulator: 10819 episodes, 61 scenes (MP3D).

and stop. Analyze this series of images to decide your next

move, which could involve turning left or right by a

Assistant: The next action is move forward 75 cm.

specific degree or moving forward a certain distance.

Sample video segment + action (Action Planning Sample)

Video + instruction (Instruction Reasoning Sample)

Data collection

We collect the navigation data based on R2R dataset training-split on VLN-CE simulator: 10819 episodes, 61 scenes (MP3D).

R2R train -> R2R val-unseen (cross split)

		Obser	vation		VLN-CE R2R Val-Unseen						
	Pan.	S.RGB	Depth	Odo.	TL	NE↓	OS↑	SR↑	SPL ↑		
AG-CMTP [15]	V		√	√	53 2	7.90	39.2	23.1	19.1		
R2R-CMTP [15]	✓		\checkmark	\checkmark	·	7.90	38.0	26.4	22.7		
LAW [73]		\checkmark	\checkmark	\checkmark	8.89	6.83	44.0	35.0	31.0		
CM2 [29]		\checkmark	\checkmark	\checkmark	11.54	7.02	41.5	34.3	27.6		
WS-MGMap [16]		\checkmark	\checkmark	\checkmark	10.00	6.28	47.6	38.9	34.3		
Seq2Seq [43]		\checkmark	\checkmark		9.30	7.77	37.0	25.0	22.0		
CMA [43]		\checkmark	\checkmark		8.64	7.37	40.0	32.0	30.0		
RGB-Seq2Seq		\checkmark			4.86	10.1	8.10	0.00	0.00		
RGB-CMA		\checkmark			6.28	9.55	10.8	5.00	4.43		
Ours		\checkmark			7.63	5.47	49.1	37.4	35.9		

↑ SR (success rate)

↑ OS (oracle success rate)

↑ SPL (success weighted by path length)

↓ NE (Navigation error)

SOTA level performance with only RGB video inputs

R2R train -> RxR val-unseen (cross dataset)

	Ob	servatio	n	VLN-CE RxR Val-Unseen							
	S.RGB	Depth	Odo.	TL	NE↓	OS↑	SR↑	SPL ↑			
LAW [73]	√	√	√	4.01	10.87	21.0	8.0	8.0			
CM2 [29]	✓	\checkmark	\checkmark	12.29	8.98	25.3	14.4	9.2			
WS-MGMap [16]	✓	\checkmark	\checkmark	10.80	9.83	29.8	15.0	12.1			
Seq2Seq [43]	✓	\checkmark		1.16	11.8	5.02	3.51	3.43			
CMA [43]	✓	\checkmark		5.09	11.7	10.7	4.41	2.47			
RGB-Seq2Seq	✓			4.43	11.2	12.2	0.0	0.0			
RGB-CMA	✓			13.56	9.55	14.8	0.0	0.0			
A^2 Nav [17]	✓			_	_	_	16.8	6.3			
Ours	✓			10.59	8.41	34.5	23.8	21.2			

↑ SR (success rate)

↑ OS (oracle success rate)

↑ SPL (success weighted by path length)

↓ NE (Navigation error)

Our method consistently demonstrates SOTA performance, significantly surpassing baseline metrics.

R2R train -> Real world (Sim-to-real)

	Meeting Room			Office				Lab				Lounge				
	Simple I.F. Complex I.F.		Simple I.F. C		Complex I.F.		Simple I.F.		Complex I.F.		Simple I.F.		Complex I.F.			
	SR↑	NE↓	SR↑	NE	SR↑	NE↓	SR↑	NE↓	SR↑	NE↓	SR↓	NE↓	SR↑	NE↓	SR↑	NE↓
Seq2Seq [42]	4%	4.45	0%	7.21	0%	4.28	0%	6.92	0%	4.58	0%	6.61	0%	5.95	0%	6.82
CMA [42]	0%	4.27	0%	7.30	8%	4.62	0%	5.71	4%	4.35	0%	5.67	0%	4.63	0%	5.46
WS-MGMap [45]	52%	1.18	24%	2.20	60%	0.96	20%	2.94	44%	1.85	12%	3.18	48%	1.66	32%	2.88
Ours	92%	0.55	56%	0.98	84%	0.63	48%	0.71	76%	0.83	40%	1.89	88%	0.72	44%	1.37

Example:

Real-world experiment – Simple Instruction

Simple Instruction following

Speed up x10

Walk towards the door then stop.

Walk towards the white box then stop.

Real-world experiment - Outdoor Scenes

Simple Instruction following

Speed up x10

Walk forward to the chair then turn right, and stop at the stairs.

Real-world experiment – Complex Instruction

Complex Instruction following

Speed up x10

Go straight and move close to the plant, then turn right facing the door, then walk to the door and stop.

Thanks for your attention

Project page: https://pku-epic.github.io/NaVid/

GALBOT

Contact me at rhoggmail.com, hewang@pku.edu.cn.