
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Towards Better De-raining Generalization via
Rainy Characteristics Memorization and Replay

Anonymous Author(s)

Abstract—Current image de-raining methods primarily learn
from a limited dataset, leading to inadequate performance in
varied real-world rainy conditions. To tackle this, we introduce
a new framework that enables networks to progressively expand
their de-raining knowledge base by tapping into a growing pool
of datasets, significantly boosting their adaptability. Drawing
inspiration from the human brain’s ability to continually absorb
and generalize from ongoing experiences, our approach borrow
the mechanism of the complementary learning system. Specifi-
cally, we first deploy Generative Adversarial Networks (GANs) to
capture and retain the unique features of new data, mirroring the
hippocampus’s role in learning and memory. Then, the de-raining
network is trained with both existing and GAN-synthesized data,
mimicking the process of hippocampal replay and interleaved
learning. Furthermore, we employ knowledge distillation with the
replayed data to replicate the synergy between the neocortex’s
activity patterns triggered by hippocampal replays and the pre-
existing neocortical knowledge. This comprehensive framework
empowers the de-raining network to accumulate knowledge
from various datasets, continually enhancing its performance on
previously unseen rainy scenes. Our testing on three benchmark
de-raining networks confirms the framework’s effectiveness. It
not only facilitates continual knowledge accumulation across six
datasets but also surpasses state-of-the-art methods in generaliz-
ing to new real-world scenarios.

Index Terms—Image de-raining, deep learning, generalization,
knowledge accumulation.

I. INTRODUCTION

S INGLE image de-raining, which seeks to eliminate rain
streaks from images to reveal their clean versions, is piv-

otal for enhancing the efficacy of subsequent vision tasks like
classification and detection [1–7]. Despite the advancements
achieved by deep learning-based de-raining methods [8–12], a
critical shortcoming remains: their reliance on learning specific
de-raining patterns from a limited set of rainy images. This
approach results in underwhelming performance when applied
in varied real-world conditions, due to the inability to fully
represent the complexity of real-world rain distribution, as
illustrated in Fig 1. To surmount this challenge, it is essential to
develop de-raining methods capable of continually expanding
their knowledge by learning from an ever-increasing collection
of de-raining datasets. This strategy enables the networks to
significantly improve their adaptability and performance in
real-world scenarios, addressing the partial coverage issue of
current specific de-raining mappings.

One potential solution is to integrate newly acquired data
with existing data and retrain the network from scratch.
However, this approach requires retraining for each new
dataset, and as the combined dataset grows, the retraining costs
escalate, making this method impractical due to the significant
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Fig. 1: Visual comparison between a de-raining network
(exemplified by the Multi-scale Fusion De-raining Network
(MFDNet)[13]) trained on a fixed de-raining dataset and our
proposed continual de-raining framework (CLGID), which
accumulates de-raining knowledge from a sequence of de-
raining datasets. While MFDNet trained on a fixed dataset
can handle only specific types of real-world rain streaks (i.e.,
Rain100H[14]→ Heavy, Rain100L[14]→ Light), our CLGID
is capable of addressing diverse real-world rainy scenes.

computational expense. Alternatively, the de-raining network
could be sequentially trained on newly acquired data. How-
ever, this approach is prone to catastrophic forgetting [15],
which occurs due to interference between new and previously
learned knowledge, resulting in an ineffective accumulation of
de-raining knowledge.

To address this issue, recent efforts have been focused on ef-
ficiently gathering de-raining insights from data streams. These
initiatives include various strategies, such as adjusting model
parameter weights [16], segregating model parameters [17],
and learning prompts specific to the task [18]. However, these
methods continue to face challenges in memory capacity and
generalization. As illustrated in Fig 2, the introduction of
additional datasets leads to a saturation of memory capacity,
which in turn limits the enhancement of the network’s ability
to generalize.

On the other hand, humans have an exceptional capacity to
continuously learn and remember various events, extracting
statistical patterns from these events to develop the ability
to generalize to new situations. The complementary learning
system of the human brain, involving the hippocampus and
neocortex, is pivotal in this cognitive process [15, 24, 25].
Inspired by this remarkable capability, an intriguing ques-
tion arises: can we draw inspiration from the human brain’s
complementary learning system, which facilitates ongoing
memory of events and generalization across these memories,
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Fig. 2: (a) Comparison of memory performance across each of
the six datasets after training on a stream of six datasets [14,
19, 20]: 1400-1200M-100H-100L-1200L-1200H. (b) General-
ization performance variance on unseen real-world SPA-data
[21] during training on a stream of six datasets. We compare
the SOTA methods PIGWM [16], NR [17], CID [22], DPL
[18], and CLAID [23] with our proposed CLGID, all using
MFDNet [13] as the de-raining backbone.

to overcome existing challenges of the image de-raining?
In this paper, we draw inspiration from the human brain’s

Complementary Learning system to introduce a new Gen-
eralized Image De-raining framework (CLGID). Specifically,
the complementary learning system comprises of the hip-
pocampus and the neocortex. The hippocampus is responsible
for learning and storing unique perceptions of events [26].
It then replays these memories, mixed with new events, to
the neocortex. Through a cycle of replaying hippocampal
memories and interspersed learning, the neocortex harmonizes
these memories with existing neocortical knowledge [27],
gradually extracting structured insights and developing the
ability to generalize to new scenarios.

Mirroring this, we use GANs to mimic the hippocampus
by learning and store the rainy characteristics of each dataset.
The de-raining network, acting as the neocortex, is then trained
on a mix of GAN-generated memories and current data. This

method replicates the hippocampal to neocortical replay and
interleaved learning process, fostering the network’s ability to
generalize across data. Additionally, we incorporate knowl-
edge distillation with replayed data to ensure the neocortical
activity patterns, triggered by hippocampal replays, align with
pre-existing neocortical knowledge. Extensive experiments on
three representative de-raining networks [13, 28, 29] confirm
that CLGID effectively preserves memory across six datasets
and constantly improves generalization to unseen real-world
images, outperforming existing methods. Fig. 2 presents re-
sults based on MFDNet [13].

Additionally, recent discoveries in cognitive science [30, 31]
bolster the theory of the complementary learning system,
suggesting the neocortex can swiftly assimilate structured
knowledge when new events closely resemble past ones.
Motivated by these insights, we propose a pattern similarity-
based training acceleration algorithm to enhance our CLGID
framework. Essentially, we evaluate the similarity in rain pat-
terns between the new dataset and GAN-generated memories
before beginning training. Depending on this similarity, we
modify the number of training cycles for the new dataset. A
higher similarity leads to fewer training cycles and reduced
training duration. This strategy allows us to cut down the
overall training time by an average of 48% without sacrificing
generalization capabilities.

To summarize, the key contributions of our paper are
outlined below:

• Inspired by the complementary learning system in human
brain, we propose a novel continual learning paradigm
for image de-raining, emphasizing human-like knowledge
accumulation, offering a novel perspective on enhancing
model generalization.

• We propose a generalized de-raining framework (CLGID)
that integrates generative replay, interleaved training, and
consistency-based distillation to accumulate de-raining
knowledge across multiple datasets while alleviating
catastrophic forgetting.

• We introduce a similarity-based training speedup mech-
anism that reduces training iterations for new datasets
based on their similarity to previously learned ones,
expediting training without compromising generalization.

II. RELATED WORKS

A. Single Image De-raining

Recent years have witnessed significant progress in image
de-raining. Most traditional methods for addressing this prob-
lem employ kernels [32], low-rank approximation [33], and
dictionary learning [34]. However, due to using the hand-
crafted features to estimate the rain model in traditional de-
raining methods, they fail under complex rain conditions and
produce degraded image contents. Recently, deep learning-
based methods [35–40] have emerged for rain streak re-
moval and achieved impressive restoration performance. Air-
Net [41] proposes a contrastive-based all-in-one restoration
framework that handles diverse unknown corruptions, includ-
ing de-raining, without requiring prior degradation informa-
tion, and shows strong flexibility in real-world scenarios.
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CLEARER [42] introduces a NAS-based multi-scale image
restoration architecture that adaptively balances performance
and complexity, replacing handcrafted design. MaIR [43]
leverages a Mamba-based structure with continuity-preserving
scanning and sequence attention, and achieves state-of-the-
art results across multiple restoration tasks, including de-
raining. DPCNet [44] introduces a dual-path spatial–frequency
interaction network with adaptive fusion, effectively restoring
rain-corrupted details across diverse conditions. DLINet [45]
adopts a decoupled architecture for rain location and in-
tensity, mitigating feature interference and improving sub-
task specialization. DualCNN [46] introduces a dual-branch
network for joint raindrop and rain streak removal, combining
detail restoration and color enhancement with guided filtering
and skip connections. PLSA [47] presents a 3DLUT-based
enhancement framework with pixel-adaptive intensity model-
ing and saturation-aware correction, improving visibility and
perceptual quality in degraded or low-light regions More deep
learning-based methods can be found in [48, 49].

B. Accumulating De-raining Knowledge

While promising, most existing methods are trained on
a fixed dataset, focusing on learning specific rain patterns.
However, relying solely on such static training data is insuffi-
cient to cope with the complex and diverse rain distributions
encountered in real-world images. When exposed to unseen
rainy scenarios, these networks often experience a notable drop
in performance. Therefore, it is important to enable de-raining
networks to continually accumulate knowledge from increas-
ingly diverse datasets, rather than depending entirely on a fixed
one, allowing them to steadily enhance their generalization
ability in practical applications. Recent studies [18, 22, 23]
explore equipping de-raining networks with continual learning
capabilities. For instance, PIGWM [16] develops a parameter-
importance-guided weight modification method that enables
de-raining networks to learn from a sequence of datasets.
NR [17] explores a neural reorganization method to ensure
the accumulation of de-raining knowledge and overcome
catastrophic forgetting. Gu et al. [50] propose a memory
management strategy, called associative memory, that links
the current pathway with historical representations to enable
incremental rain removal. However, these methods accumulate
de-raining knowledge effectively only within a limited number
of datasets. As more datasets are introduced, their memory
capacity becomes saturated, restricting knowledge accumula-
tion and hindering further improvement in generalization. In
contrast, our CLGID, inspired by the complementary learning
system, imitates the coordinated roles of rapid learning in the
hippocampus and gradual integration in the neocortex to main-
tain memory capacity and prevent saturation. Benefiting from
this brain-inspired mechanism, CLGID continually enhances
generalization as more datasets arrive and achieves superior
performance on unseen real-world rainy images.

Notably, recent work MiOIR [51] highlights the benefit
of introducing datasets in an orderly manner so that earlier-
learned datasets serve as a pre-training foundation for later
ones, which could inspire more principled training orders

in accumulating de-raining knowledge to reduce conflicts
between new and old knowledge.

C. Continual Learning

At the methodological level, our proposed framework can
be more broadly categorized as continual learning (CL) [52],
whose goal is to enable a model to acquire new knowledge
from a stream of data or tasks while mitigating catastrophic
forgetting. Existing CL methods can be broadly divided into
three categories. The first category, regularization-based meth-
ods [53], introduces constraints into the objective function
to preserve prior knowledge, thereby limiting parameter or
output drift. The second category [54], replay-based methods,
explicitly consolidate old knowledge by either storing a small
set of historical samples or using generative models to syn-
thesize past data, which are then mixed with new data during
training. The third category [55], parameter-isolation methods,
allocates relatively independent parameter subsets or pathways
to different tasks, reducing interference between them.

Most general CL methods are validated on high-level tasks
such as image classification, where the knowledge to retain
primarily consists of high-level semantic features that define
decision boundaries. In contrast, image de-raining is a low-
level, pixel-wise reconstruction task, where retention centers
on the statistical and structural properties of the degradation
process, including rain streak orientation, density, and scale.
This fundamental difference in task nature leads to a different
knowledge retention target: classification focuses on the sep-
arability of high-level semantics, whereas de-raining focuses
on modeling the degradation mapping. As an ill-posed inverse
problem, de-raining can be approximated as the additive com-
bination of a background layer and a rainy layer. Exploiting
this property, we focus memory retention on the degradation:
for each previously seen dataset, we train a generator to
model only the distribution of degradations, decoupled from
the background. During interleaved learning and distillation,
previous degradations are combined with new backgrounds,
concentrating gradients on preserving degradation removal
ability while avoiding interference from background shifts.
Distillation is applied at the output level to directly stabilize
reconstructed images rather than high-level features, making
it better aligned with pixel-wise regression objectives. These
specific designs precisely ground the general CL paradigm in
the key variable of de-raining, i.e., degradation process.

D. Domain Generalization

Consistent with the central goal of this work, domain
generalization (DG) [56] aims to learn a model from data in
one or multiple related yet distinct domains so that it can
perform well in unseen scenarios. Existing DG methods can
be broadly categorized into four groups: (1) domain align-
ment [57], which aligns feature distributions across domains
to reduce domain shift; (2) data augmentation [58], which
diversifies training data through style perturbations or gen-
erative synthesis to broaden distributional coverage; (3) self-
supervised learning [59], which employs auxiliary tasks on
unlabeled data to learn domain-invariant representations; and
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Fig. 3: Flowchart of the proposed CLGID framework. Given each incoming dataset Dn, a corresponding GAN (Gn) mimics
the hippocampus to learn and store rain characteristics. Previously trained GANs replay past data (D̂n), interleaved with current
data (Dn), to train the de-raining network (Fn), analogous to the neocortex. Knowledge distillation ensures consistency between
current and past knowledge. A similarity-based training speedup algorithm further reduces training iterations.

(4) learning disentangled representations [60], which decouple
domain-invariant components and suppresses domain-specific
variations to emphasize invariant information. Unlike DG
methods that enhance generalization from a static perspective,
this work targets temporally varying, continual scenarios with
the goal of dynamically improving the model’s generalization
capability. By sequentially learning from a series of de-raining
datasets, the proposed approach continually accumulates de-
raining knowledge, thereby expanding the coverage of rain
pattern distributions and enabling the model to maintain supe-
rior performance when facing unseen real-world rainy scenes.

III. METHODOLOGY

Given a stream of de-raining datasets {Di}Ni=1, where each
Di contains Mi pairs of rainy images xi and clean back-
grounds yi, our goal is to constantly improve the de-raining
network generalization by accumulating de-raining knowledge
from increasingly abundant datasets. To achieve this goal,
we seek inspiration from the human brain. Humans possess
the ability to constantly learn and memorize a stream of
perceived events, extracting statistical structures across mem-
orized events to acquire the generalization ability to unseen
situations. The complementary learning system, comprised of
the hippocampus and neocortex, significantly contributes to
the aforementioned process. Inspired by the complementary
learning system, we propose CLGID, a generalized image de-
raining framework that imitates this mechanism to maintain
effective memory capacity and improve generalization. The
overall framework is shown in Fig. 3.

A. Imitating the complementary learning system

In the complementary learning system, the hippocampus
allows for the learning and individualized storage of a stream

of perceived event. Accordingly, we adopt GANs, as exem-
plified by VRGNet [61], to learn and store the rain streak
characteristics for each incoming dataset individually, which
play the role of the hippocampus. Specifically, with the arrival
of a new dataset Dn∈[1,N ], a corresponding GAN Gn will be
trained on Dn to learn the rain streak characteristics of Dn.
The forward propagation process of learning the rain streak
characteristics can be formulated as:

αn, βn = Ri (xn;WRi
) , (1)

zn ← Reparameterize(αn, βn), (2)

rn = Rg

(
zn;WRg

)
, (3)

where Ri and Rg indicate the rain inference network and rain
generator in VRGNet, WRi

and WRg
denote the parameters

of Ri and Rg , αn and βn are the posterior parameters
(i.e., mean and variance, respectively) of latent variable zn
inferenced by Ri, rn represents the rain streak layer of xn

generated by Rg . More training details can be found in [61].
Consequently, we have obtained the Gn, which store the rain
streak characteristics of Dn.

Then, the hippocampus will repeatedly replay the memo-
rized events in the hippocampus, interleaved with the new
events, back to the neocortex. To imitate the hippocampus-
to-neocortex replay and the interleaved learning, we first
construct a replayed dataset D̂n generated by previously
learned GANs {G1, G2, · · · , Gn−1} that are trained on
{D1, D2, · · · , Dn−1}, respectively. Then, the replayed dataset
D̂n and the new dataset Dn are utilized for training the de-
raining network Fn, which serves as the neocortex. Specif-
ically, for replayed dataset D̂n, we determine which GAN
generates each pair of images by uniformly sampling from
the previously learned GANs, which can be expressed as:

Gr ← {G1, G2, · · · , Gn−1}. (4)
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Moreover, we sample the latent variable ẑn from isotropic
Gaussian distribution and use the rain generator Rg of Gr to
generate the rain streak layer r̂n [61]:

ẑn ← N (0, It), (5)

r̂n = Rg(ẑn;WRg
), (6)

where It ∈ Rt×t is the unit matrix. For each generated rain
layer r̂n, we randomly select a clean background image yn
from Dn = {xm

n , ymn }
Mn
m=1 to form a replayed rainy image x̂n

by adding r̂n to yn. Therefore, the replayed dataset D̂n can
be recorded as:

D̂n = {ymn + r̂mn , ymn }
Mn

m=1 ≜ {x̂m
n , ŷmn }

Mn

m=1 . (7)

In addition, throughout this iterative process of replaying
hippocampal memories and interleaved learning, the neocor-
tical activity patterns activated by the hippocampus’ replayed
events remain consistent with existing neocortical knowledge.
To imitate this characteristic, we employ knowledge distil-
lation with replayed data to ensure the consistency of the
knowledge in the de-raining network. Specifically, we distill
the de-raining knowledge from the previous obtained de-
raining network Fn−1 that trained with the arrival of Dn−1 to
the current de-raining network Fn. We send the replayed rainy
images of D̂n to both Fn−1 and Fn and ensure the consistency
of the knowledge by encouraging the outputs of Fn−1 and Fn

to be similar. Thus, the neocortex gradually extracts structured
knowledge across events and acquires the ability to generalize
to unseen situations.

To sum up, the total loss function of the proposed frame-
work comprises the interleave loss, which includes the new
loss and the replay loss, along with the consistency loss,
which enables the de-raining network to constantly acquire
generalization ability to unseen real-world data after training
on a stream of de-raining datasets:

Lnew = Lchar(Fn(xn), yn) + Ledge(Fn(xn), yn), (8)

Lreplay = Lchar(Fn(x̂n), ŷn) + Ledge(Fn(x̂n), ŷn), (9)

Linterleave = Lreplay + Lnew, (10)

Lconsist = ∥Fn (x̂n)− Fn−1 (x̂n)∥1 , (11)

Ltotal = Linterleave + λ× Lconsist, (12)

where the Lchar and Ledge are the loss functions of the de-
raining network, as exemplified by MPRNet [29], λ is the
hyper-parameter for balancing the interleave loss and the con-
sistency loss, the new loss and the replay loss are considered
to be of equal significance as the size of the new dataset Dn is
the same as the replayed dataset D̂n. The complexity analysis
of the proposed CLGID framework is provided in Section
I of Supplementary Material, detailing how its parameter
count, FLOPs, and time cost evolve as the number of datasets
increases.

B. Similarity-based training speedup algorithm

Recent neuroscience studies [30, 31] have updated the
complementary learning system theory, demonstrating that
the neocortex can extract structured knowledge across events
faster than originally suggested if new events are highly similar
to previously learned events. Inspired by these findings, we de-
sign a similarity-based training speedup algorithm to comple-
ment our CLGID framework. We calculate the rain characteris-
tics similarity between the new and previously learned datasets
and reduce the total training iterations and training time for
the new dataset according to its similarity to the previously
learned datasets. The greater the similarity, the fewer the total
training iterations and the shorter the training time. Specif-
ically, with the arrival of new dataset Dn = {xm

n , ymn }
Mn
m=1,

we utilize the replayed dataset D̂n constructed for training Dn,
which is composed by uniformly sampling from all previously
trained GANs {G1, G2, · · · , Gn−1}. To compute similarity,
we divide D̂n into subsets {D̂1, D̂2, · · · , D̂n−1} according to
GAN sources and extract Histogram of Oriented Gradients
(HOG) [62] from the rainy images in both D̂i∈{1,...,n−1} and
Dn as:

ĥi = HOG(x̂i), hn = HOG(xn). (13)

The Kullback-Leibler (KL) divergence [63] is then used to
compute the similarity between D̂i and Dn:

sni = DKL(ĥi||hn), (14)

where sni denotes the similarity coefficient between
D̂i and Dn. After calculating all similarity coefficients
{sn1 , sn1 , · · · , snn−1}, we select the smallest of these values as
the final similarity coefficient Sn between the new dataset
Dn and the previously learned datasets:

Sn = min
i∈{1,...,n−1}

sni . (15)

Since the value range of KL divergence is [0,+∞], we utilize
a mapping function to map its value range from [0,+∞] to
[0, 1] for bounding its value domain:

Ŝn = 1− e−Sn . (16)

Finally, we reduce the total training iterations from In to În
for the new dataset Dn based on the final similarity coefficient
Ŝn, thus reducing the training time:

În = Ŝn × In. (17)

C. Improving scalability of the framework

Similarity-Based Selective GAN Training: Current frame-
work trains one GAN for each new dataset, which leads
to linearly growing training and storage cost. Inspired by
the similarity-based training speedup mechanism, we ex-
tend this idea to GAN training and determine whether
a new GAN should be trained for the incoming dataset
Dn = {xm

n , ymn }
Mn
m=1. Following the similarity computation

pipeline defined in Eq. 13–16, we first compute the similarity
sni between Dn and each GAN-generated replayed dataset
D̂i∈{1,...,n−1}. Let Sn = mini∈{1,...,n−1} s

n
i , we denote the

normalized divergence between the current dataset Dn and
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all replayed datasets {D̂i}n−1
i=1 as Ŝn = 1 − e−sn ∈ [0, 1]. A

higher value of Ŝn implies greater dissimilarity.
To improve the scalability of GAN training, we train a

new GAN Gn only when the normalized similarity score Ŝn

exceeds a predefined threshold T̂ ∈ (0, 1):

Train Gn if Ŝn > T̂ . (18)

Let the binary indicator be defined as:

δn =

{
1, if Ŝn > T̂ ,

0, otherwise,
(19)

then the total number of trained GANs after N stages is:

|GN | =
N∑
i=1

δi. (20)

With the increasing number of trained GANs, the diversity of
captured rain patterns becomes more comprehensive, lowering
the probability of requiring additional GAN training. As a
result, both GAN training and storage costs grow sub-linearly,
thus improving the overall scalability of the framework.
GAN-replayed Data Reuse: In current framework, each new
dataset Dn requires generating a replayed dataset D̂i of the
same size by uniformly sampling from all previously trained
GANs {Gi}n−1

i=1 . This leads to Mn GAN forward passes at
every stage, and a total replay cost of O(MN), which scales
linearly with the number of datasets and poses a practical
limitation.

To address this scalability bottleneck, we propose a replay
data reuse mechanism. The core idea is to reuse replayed sam-
ples generated in previous stages and only perform incremental
generation if necessary. Specifically, at stage n, the replayed
dataset D̂n is constructed by generating Mn/(n− 1) samples
using each of the previously trained GANs {G1, . . . , Gn−1},
where Mn is the size of the current dataset Dn. We denote
ri,n = Mn/(n−1) as the required number of replayed samples
from Gi at stage n. Meanwhile, let ci,n−1 = Mn−1/(n − 2)
be the number of cached samples generated by Gi during the
previous stage n − 1. Then, for each i = {1, . . . , n − 2}, we
reuse the cached samples and generate only the difference:

∆i,n = max(0, ri,n − ci,n−1).

For the newly introduced GAN Gn−1, which was not involved
in D̂n−1, we generate all its required samples:

∆n−1,n = rn−1,n =
Mn

n− 1
.

To analyze the total replay cost up to stage N , we consider the
total number of additional forward passes across all stages:

CN =

N∑
n=2

(
n−2∑
i=1

∆i,n +∆n−1,n

)

=

N∑
n=2

(n− 2) ·max

(
0,

Mn

n− 1
− Mn−1

n− 2

)
+

Mn

n− 1
.

(21)

As shown by the mathematical proof in Section II of Supple-
mentary Material, we can conclude that:

CN = O(M logN), (22)

demonstrating that the total replay cost grows logarithmically
with the number of datasets, thereby enhancing scalability over
the original linear design.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. We use six de-raining datasets for training:
Rain100H [14], Rain100L [14], Rain1400 [19], and the light-
, medium-, and heavy-density subsets of Rain1200 [20] (de-
noted as Rain1200L, Rain1200M, and Rain1200H). Rain100H
and Rain100L each contain 1,800 training and 200 testing
images, while Rain1400 provides 12,600/1,400 images with
fourteen types of streak orientations and magnitudes. Each
Rain1200 subset includes 4,000/400 images, representing dif-
ferent rain-density levels. For memory performance evaluation,
after sequentially training on the dataset stream, each method
is tested on the corresponding test set of every dataset in the
stream. For generalization performance, following [17], we
adopt SPA-data [21] and Real-Internet [21], which contain
real-world rainy images unseen during training, thus intro-
ducing both cross-dataset and synthetic-to-real domain gaps.
SPA-data offers 29,500 high-quality rain/clean pairs from 170
real rain videos (28,500/1,000 split), and we use its test set
for evaluation. Real-Internet contains 146 real rainy images
without ground-truth labels, collected from the Internet.

Comparison methods. We conduct comparative experi-
ments on memory and generalization ability, utilizing a base-
line (denoted by “SF”), along with three related state-of-the-
art methods: PIGWM [16], NR [17], CID [22], DPL [18], and
CLAIO [23]. SF entails the sequential fine-tuning of the de-
raining network on each new incoming dataset. Additionally,
we introduce individual training (denoted by “Individual”),
which trains and tests on each single dataset within a stream of
datasets, as a reference to evaluate the memory performance
of several methods.

Implementation Details. Memory and generalization per-
formance are evaluated in terms of Peak Signal-to-Noise Ratio
(PSNR) [64], and Structural Similarity (SSIM) [65] metrics.
We compute PSNR and SSIM metrics over RGB channels for
color images. Our approach is implemented in PyTorch using
NVIDIA 3090 GPUs. To ensure a fair comparison, we set
the patch size of all methods to 64, including baseline, SOTA
methods, and our approach. We conduct experiments on three
representative de-raining networks: MFDNet [13], Restormer
[28], and MPRNet [29]. The training settings of the de-raining
networks remain consistent with their publicly released code,
including batch size, training epochs, iterations, optimizer,
scheduler, etc. Note that DPL is designed for transformer-
based de-raining networks; therefore, we only evaluate DPL on
MFDNet and Restormer. The hyper-parameter of our frame-
work, λ, which balances the interleave loss and the consistency
loss, is set to 1. The T̂ in similarity-based selective GAN
training is set to 0.4.
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TABLE I: Qualitative comparison of memory and generalization performance after training on a stream of four datasets in four
distinct sequences. All comparison methods using MFDNet [13] as the de-raining network. CLGID† represents the accelerated
training version of CLGID, using our proposed similarity-based training speedup algorithm. Individual signifies training and
testing on each dataset individually, providing a reference for evaluating the memory performance. We evaluate generalization
on SPA-data, which has never been seen during training. We highlight the best results using such formatting.

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-1200M-100H-100L

Individual 31.79 0.920 32.24 0.920 27.70 0.886 36.16 0.978 31.97 0.926 – –
SF 28.67 0.878 27.00 0.833 25.54 0.840 36.34 0.977 29.39 0.882 33.59 0.941

PIGWM 29.18 0.893 27.74 0.963 26.38 0.863 33.85 0.965 29.29 0.921 33.94 0.947
NR 30.21 0.908 27.95 0.874 18.39 0.615 31.74 0.939 27.07 0.834 33.70 0.947
CID 29.01 0.880 29.67 0.882 24.91 0.825 34.03 0.960 29.41 0.887 33.03 0.939
DPL 29.64 0.876 28.21 0.875 25.57 0.844 34.61 0.962 29.51 0.889 32.54 0.931

CLAIO 30.01 0.901 30.53 0.893 27.36 0.882 34.78 0.961 30.67 0.909 33.98 0.946

CLGID 31.26 0.915 31.65 0.905 28.07 0.891 36.77 0.979 31.94 0.923 34.12 0.948
CLGID† 31.09 0.912 30.65 0.893 27.94 0.889 36.65 0.979 31.58 0.918 34.06 0.947

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-100L-1200M-100H

Individual 31.79 0.920 36.16 0.978 32.24 0.920 27.70 0.886 31.97 0.926 – –
SF 28.61 0.879 36.19 0.976 26.85 0.837 28.57 0.900 30.06 0.898 33.70 0.943

PIGWM 29.59 0.899 33.35 0.964 29.22 0.884 26.51 0.865 29.67 0.903 33.48 0.948
NR 30.23 0.904 31.22 0.938 28.64 0.871 19.96 0.691 27.51 0.851 32.20 0.940
CID 28.57 0.878 32.43 0.940 29.01 0.880 27.58 0.884 29.40 0.896 33.51 0.948
DPL 29.34 0.886 33.27 0.961 28.07 0.869 24.47 0.839 28.79 0.889 33.89 0.948

CLAIO 30.82 0.903 35.01 0.969 28.30 0.871 27.41 0.884 30.39 0.907 34.10 0.949

CLGID 31.24 0.916 36.21 0.978 31.74 0.908 27.68 0.887 31.72 0.922 34.42 0.952
CLGID† 31.06 0.906 36.27 0.978 30.05 0.883 27.66 0.884 31.26 0.913 34.24 0.949

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100L-100H-1400-1200M

Individual 36.16 0.978 27.70 0.886 31.79 0.920 32.24 0.920 31.97 0.926 – –
SF 24.62 0.819 13.02 0.369 28.98 0.891 32.40 0.922 24.76 0.750 29.09 0.917

PIGWM 26.08 0.872 14.02 0.435 28.40 0.891 30.85 0.895 24.84 0.773 28.16 0.908
NR 31.98 0.951 17.13 0.564 29.81 0.898 28.01 0.869 26.73 0.821 32.55 0.933
CID 32.01 0.955 21.62 0.770 28.10 0.888 29.67 0.871 27.85 0.871 33.01 0.941
DPL 31.71 0.953 20.70 0.752 29.95 0.902 29.35 0.875 27.93 0.871 32.99 0.940

CLAIO 33.68 0.969 24.31 0.820 29.89 0.901 31.62 0.912 29.88 0.901 33.56 0.944

CLGID 35.62 0.975 26.09 0.847 31.36 0.920 32.00 0.914 31.27 0.914 34.20 0.951
CLGID† 34.82 0.972 25.69 0.823 31.18 0.920 31.93 0.916 30.91 0.908 34.09 0.949

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100H-100L-1400-1200M

Individual 27.70 0.886 36.16 0.978 31.79 0.920 32.24 0.920 31.97 0.926 – –
SF 12.98 0.365 24.93 0.826 28.83 0.887 32.37 0.922 24.78 0.750 29.12 0.917

PIGWM 14.58 0.461 26.14 0.869 29.08 0.901 30.76 0.894 25.14 0.781 28.16 0.908
NR 23.66 0.802 31.73 0.945 29.76 0.898 29.16 0.879 28.58 0.881 32.55 0.933
CID 24.98 0.813 32.11 0.942 29.54 0.891 29.31 0.878 28.99 0.881 33.01 0.941
DPL 20.84 0.736 32.17 0.941 28.32 0.872 30.69 0.883 28.01 0.858 32.63 0.940

CLAIO 24.02 0.808 35.00 0.971 30.28 0.909 31.25 0.910 30.14 0.900 33.50 0.942

CLGID 26.74 0.851 35.54 0.974 31.11 0.919 31.90 0.914 31.32 0.915 33.96 0.949
CLGID† 26.29 0.832 35.18 0.971 31.10 0.918 31.78 0.911 31.09 0.908 33.82 0.948

B. Results on Benchmark Datasets
To validate the efficacy of our approach, we conduct twelve

experiments using three representative de-raining networks,
i.e., MFDNet [13], Restormer [28], and MPRNet [29], on
four representative training sequences composed of four de-
raining datasets. These sequences are deliberately designed to
reflect variations in rain type diversity, intensity, and dataset
complexity, enabling a systematic evaluation of the proposed
method’s robustness to training order in continual learning
scenarios. After training, we evaluate both memory perfor-
mance on the seen datasets and generalization performance
on the unseen real-world SPA-data [21]. As shown in Tab. I,
II, and III, sequential fine-tuning (SF) suffers from severe
forgetting, leading to poor generalization. Compared with

state-of-the-art methods including PIGWM [16], NR [17],
CID [22], DPL [18], and CLAIO [23], our CLGID achieves
substantial improvements in memory retention and matches the
performance of the Individual baseline, which represents an
upper bound by training separately on each dataset. Regarding
generalization, CLGID consistently outperforms all competi-
tors across all settings. Furthermore, we analyze the variation
in generalization performance as more datasets are introduced,
as illustrated in Fig. 4, 5, and 6. While other methods show
limited or unstable improvement due to memory saturation,
our method exhibits consistent gains in generalization across
all experiments, demonstrating its strong knowledge accumula-
tion ability and robustness to variations in training sequences.
We also provide qualitative comparisons between CLGID and
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TABLE II: Qualitative comparison of memory performance after training on a stream of four datasets in four distinct sequences.
All comparison methods utilize Restormer [28] as the de-raining network.

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-1200M-100H-100L

Individual 32.01 0.929 32.80 0.925 29.87 0.914 38.33 0.985 33.25 0.938 – –
SF 26.63 0.842 21.79 0.707 21.94 0.679 38.52 0.986 27.22 0.804 32.87 0.931

PIGWM 27.80 0.875 23.61 0.781 25.89 0.830 36.30 0.977 28.40 0.866 33.10 0.938
NR 31.62 0.924 29.73 0.868 18.41 0.627 29.17 0.911 27.23 0.833 33.39 0.941
CID 28.79 0.886 30.25 0.898 25.17 0.824 32.46 0.940 29.17 0.887 33.30 0.941
DPL 28.32 0.888 28.48 0.849 23.93 0.796 35.95 0.967 29.17 0.875 33.87 0.945

CLAIO 30.01 0.911 31.87 0.901 27.53 0.865 35.21 0.961 31.16 0.910 33.91 0.944

CLGID 31.74 0.923 32.18 0.912 28.59 0.889 37.37 0.982 32.47 0.927 34.03 0.948
CLGID† 31.64 0.922 32.05 0.908 28.34 0.886 37.14 0.981 32.29 0.924 34.05 0.947

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-100L-1200M-100H

Individual 32.01 0.929 38.33 0.985 32.80 0.925 29.87 0.914 33.25 0.938 – –
SF 28.72 0.880 38.15 0.983 27.13 0.841 30.22 0.920 31.06 0.906 32.60 0.929

PIGWM 29.41 0.894 34.91 0.970 27.54 0.859 28.05 0.877 29.98 0.900 33.59 0.942
NR 31.59 0.924 31.78 0.944 30.27 0.876 19.70 0.676 28.34 0.855 33.35 0.945
CID 25.67 0.834 30.44 0.935 25.51 0.825 25.90 0.821 26.88 0.854 33.03 0.939
DPL 23.20 0.770 25.10 0.834 20.67 0.683 11.70 0.387 20.17 0.669 33.26 0.940

CLAIO 30.02 0.910 35.60 0.971 30.91 0.900 27.96 0.860 31.12 0.910 34.01 0.944

CLGID 31.62 0.923 37.13 0.981 32.19 0.915 29.17 0.902 32.53 0.930 34.34 0.952
CLGID† 31.74 0.924 37.03 0.981 32.30 0.916 29.14 0.900 32.55 0.930 34.10 0.947

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100L-100H-1400-1200M

Individual 38.33 0.985 29.87 0.914 32.01 0.929 32.80 0.925 33.25 0.938 – –
SF 24.49 0.824 12.87 0.366 28.80 0.890 32.78 0.925 24.74 0.751 29.67 0.919

PIGWM 26.16 0.888 14.46 0.468 29.03 0.899 31.66 0.904 25.33 0.790 30.96 0.930
NR 36.39 0.977 20.68 0.705 28.73 0.886 27.05 0.852 28.21 0.855 33.32 0.941
CID 34.41 0.951 26.77 0.829 26.51 0.815 24.63 0.809 28.08 0.851 33.11 0.937
DPL 32.20 0.922 20.86 0.717 29.14 0.896 28.55 0.869 27.69 0.851 33.49 0.942

CLAIO 36.03 0.979 27.86 0.830 28.53 0.884 31.91 0.901 31.08 0.899 33.50 0.939

CLGID 37.79 0.983 29.23 0.903 31.50 0.921 32.12 0.912 32.66 0.930 34.24 0.945
CLGID† 37.08 0.980 28.13 0.885 31.33 0.919 32.01 0.911 32.14 0.924 34.13 0.941

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100H-100L-1400-1200M

Individual 29.87 0.914 38.33 0.985 32.01 0.929 32.80 0.925 33.25 0.938 – –
SF 12.92 0.366 24.64 0.825 28.93 0.887 32.83 0.925 24.83 0.751 30.07 0.930

PIGWM 16.96 0.597 25.90 0.859 29.18 0.908 31.64 0.906 25.92 0.818 29.66 0.908
NR 27.06 0.864 36.26 0.976 28.90 0.883 27.54 0.840 29.94 0.891 32.77 0.936
CID 24.02 0.838 33.96 0.914 28.13 0.865 26.27 0.831 28.10 0.862 33.01 0.939
DPL 24.95 0.845 32.58 0.924 28.54 0.876 28.85 0.857 28.73 0.876 32.96 0.938

CLAIO 25.77 0.851 35.98 0.959 30.03 0.891 29.43 0.894 30.30 0.899 32.03 0.932

CLGID 27.85 0.879 37.00 0.979 31.24 0.918 31.89 0.910 32.00 0.922 33.81 0.943
CLGID† 28.49 0.891 37.13 0.980 31.38 0.920 31.98 0.912 32.25 0.926 33.45 0.942
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Fig. 4: Generalization variance on unseen SPA-data during
training on four dataset streams across four sequences using
MFDNet [13], showing the top four methods.
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Fig. 5: Generalization variance on unseen SPA-data during
training on four dataset streams across four sequences using
Restormer [28], showing the top four methods.
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TABLE III: Qualitative comparison of memory performance after training on a stream of four datasets in four distinct sequences.
All comparison methods utilize MPRNet [29] as the de-raining network.

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-1200M-100H-100L

Individual 31.63 0.922 31.93 0.906 27.28 0.885 36.35 0.979 31.80 0.923 – –
SF 26.66 0.845 21.75 0.711 19.57 0.623 37.69 0.983 26.42 0.791 33.05 0.936

PIGWM 27.23 0.866 22.83 0.759 19.34 0.660 35.88 0.975 26.32 0.815 33.24 0.943
NR 30.20 0.905 26.77 0.845 23.48 0.804 34.64 0.804 28.77 0.840 33.33 0.944
CID 28.05 0.870 26.45 0.841 22.77 0.781 35.71 0.912 28.25 0.851 33.10 0.938

CLAIO 29.67 0.881 29.65 0.880 26.21 0.834 36.50 0.977 30.51 0.893 33.35 0.944

CLGID 30.83 0.912 31.27 0.900 27.46 0.869 37.37 0.981 31.73 0.916 33.56 0.945
CLGID† 30.46 0.909 31.08 0.895 26.59 0.855 37.01 0.980 31.29 0.910 33.41 0.944

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1400-100L-1200M-100H

Individual 31.63 0.922 36.35 0.979 31.93 0.906 27.28 0.885 31.80 0.923 – –
SF 28.33 0.876 35.98 0.974 26.76 0.844 29.12 0.898 30.05 0.898 32.89 0.939

PIGWM 29.30 0.896 33.92 0.962 28.20 0.876 27.06 0.859 29.62 0.898 33.87 0.948
NR 30.27 0.906 33.46 0.960 28.02 0.872 23.52 0.817 28.82 0.889 33.62 0.949
CID 28.31 0.887 33.57 0.959 27.03 0.860 25.41 0.830 28.58 0.884 32.77 0.935

CLAIO 30.07 0.901 36.17 0.976 29.11 0.881 27.29 0.865 30.66 0.906 33.53 0.945

CLGID 30.76 0.911 37.33 0.980 31.23 0.896 28.99 0.895 32.08 0.921 34.26 0.951
CLGID† 30.18 0.904 37.22 0.979 30.76 0.891 28.47 0.884 31.66 0.915 34.09 0.949

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100L-100H-1400-1200M

Individual 36.35 0.979 27.28 0.885 31.63 0.922 31.93 0.906 31.80 0.923 – –
SF 24.17 0.820 12.94 0.368 28.46 0.885 32.32 0.915 24.47 0.747 27.60 0.905

PIGWM 26.38 0.873 14.06 0.413 27.63 0.878 29.34 0.873 24.35 0.759 31.63 0.935
NR 31.46 0.941 16.02 0.488 29.39 0.895 27.89 0.869 26.19 0.798 31.87 0.938
CID 32.62 0.945 20.03 0.613 29.12 0.890 28.66 0.873 27.61 0.830 32.00 0.940

CLAIO 33.41 0.951 24.91 0.770 29.10 0.888 30.10 0.889 29.38 0.875 33.90 0.948

CLGID 35.51 0.973 27.14 0.865 30.78 0.913 31.97 0.911 31.26 0.916 34.39 0.953
CLGID† 34.58 0.967 25.88 0.834 29.26 0.901 31.56 0.904 30.32 0.902 34.13 0.952

Training Sequence Methods
Rain1400 Rain1200M Rain100H Rain100L Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

100H-100L-1400-1200M

Individual 27.28 0.885 36.35 0.979 31.63 0.922 31.93 0.906 31.80 0.923 – –
SF 12.94 0.365 24.14 0.817 28.30 0.878 32.40 0.917 24.45 0.744 28.40 0.914

PIGWM 13.29 0.393 25.17 0.849 26.83 0.863 28.37 0.859 23.42 0.741 32.37 0.937
NR 15.17 0.453 30.46 0.923 28.62 0.880 27.30 0.852 25.39 0.777 33.05 0.946
CID 20.63 0.650 30.30 0.920 29.21 0.891 28.00 0.848 27.04 0.827 33.65 0.946

CLAIO 25.02 0.814 32.92 0.959 28.79 0.883 31.20 0.900 29.48 0.889 34.01 0.948

CLGID 26.07 0.841 35.41 0.973 30.73 0.913 31.94 0.910 31.04 0.909 34.60 0.956
CLGID† 25.98 0.843 34.98 0.969 30.14 0.911 31.70 0.908 30.70 0.908 34.22 0.951
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Fig. 6: Generalization variance on unseen SPA-data during
training on four dataset streams across four sequences using
MPRNet [29], showing the top four methods.

competing methods on SPA-data [21] and Real-Internet [21]
in Section III of the Supplementary Material.

C. Extension to More Datasets
To further evaluate the memory retention and generaliza-

tion capability of CLGID on more datasets, we extend the
training sequence to include six datasets: 1400-1200M-100H-
100L-1200L-1200H. The corresponding results on memory
and generalization performance after training, as well as the
generalization trend during training, are presented in Tab. IV
and Fig. 7. CLGID consistently outperforms existing methods
in both metrics, demonstrating strong resistance to catastrophic
forgetting. Compared with its performance under the four-
dataset setting (1400-1200M-100H-100L), CLGID not only
preserves the knowledge of previously seen datasets but also
achieves further improvements in generalization to unseen
real-world images. In contrast, competing methods suffer sig-
nificant drops in generalization performance as more datasets
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TABLE IV: Qualitative comparison of memory performance after training on a stream of six datasets in 1400-1200M-100H-
100L-1200L-1200H sequence. CLGID† represents the accelerated training version of CLGID, using our proposed similarity-
based training speedup algorithm. Individual signifies training and testing on each dataset individually, providing a reference
for evaluating the memory performance. We evaluate generalization on SPA-data, which has never been seen during training.
We highlight the best results using such formatting.

Network Methods
Rain1400 Rain1200M Rain100H Rain100L Rain1200L Rain1200H Avg Memory SPA-data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MFDNet

Individual 31.79 0.920 32.24 0.920 27.70 0.886 36.16 0.978 36.22 0.958 29.91 0.889 32.34 0.925 – –
SF 26.88 0.877 30.78 0.914 13.73 0.384 23.16 0.804 27.16 0.900 30.83 0.897 25.42 0.796 31.76 0.929

PIGWM 29.09 0.899 30.38 0.900 14.72 0.446 25.59 0.850 31.34 0.921 29.83 0.878 26.83 0.816 32.39 0.940
NR 31.16 0.917 30.34 0.899 15.41 0.493 29.53 0.916 34.87 0.948 26.30 0.827 27.94 0.833 32.59 0.943
CID 29.67 0.900 28.61 0.876 23.01 0.795 31.73 0.930 30.76 0.918 25.21 0.801 28.17 0.870 32.51 0.941
DPL 30.51 0.886 29.74 0.885 22.33 0.782 28.88 0.902 30.30 0.903 26.77 0.827 28.09 0.864 32.08 0.938

CLAIO 30.01 0.901 30.89 0.905 24.85 0.811 33.55 0.940 33.79 0.942 28.71 0.854 30.30 0.892 34.00 0.946

CLGID 30.73 0.908 31.07 0.913 27.30 0.865 36.49 0.978 35.97 0.954 30.40 0.889 31.99 0.918 34.36 0.952
CLGID† 30.99 0.912 31.51 0.916 26.60 0.842 36.20 0.976 36.03 0.957 30.37 0.887 31.95 0.915 34.23 0.950

Restormer

Individual 32.01 0.929 32.80 0.925 29.87 0.914 38.33 0.985 36.54 0.960 30.95 0.898 33.42 0.935 – –
SF 27.38 0.878 31.18 0.918 13.42 0.374 23.67 0.812 27.84 0.912 31.17 0.900 25.78 0.799 30.14 0.915

PIGWM 27.98 0.886 30.20 0.891 14.45 0.434 25.00 0.837 30.53 0.899 30.19 0.880 26.39 0.805 32.24 0.929
NR 31.27 0.919 30.55 0.888 13.95 0.435 27.63 0.888 35.22 0.949 25.97 0.825 27.43 0.817 33.06 0.941
CID 30.09 0.908 28.77 0.860 16.32 0.600 30.24 0.922 33.71 0.930 25.42 0.820 27.43 0.840 33.50 0.943
DPL 29.95 0.907 30.43 0.882 15.73 0.554 25.85 0.867 33.70 0.933 25.56 0.826 26.87 0.828 32.28 0.930

CLAIO 31.34 0.920 30.21 0.879 26.27 0.853 35.90 0.960 36.01 0.952 27.98 0.844 31.29 0.901 33.80 0.948

CLGID 31.70 0.923 32.02 0.915 28.26 0.884 37.26 0.981 36.20 0.957 30.51 0.885 32.66 0.924 34.34 0.951
CLGID† 31.63 0.922 31.93 0.913 28.18 0.882 37.16 0.981 36.09 0.956 30.49 0.888 32.58 0.924 34.35 0.950

MPRNet

Individual 31.63 0.922 31.93 0.906 27.28 0.885 36.35 0.979 35.02 0.942 28.08 0.856 31.72 0.915 – –
SF 26.24 0.867 30.54 0.907 13.59 0.379 22.48 0.783 25.91 0.877 30.57 0.888 24.89 0.784 28.54 0.897

PIGWM 29.04 0.904 30.60 0.899 16.14 0.526 26.85 0.884 32.61 0.936 29.66 0.871 27.48 0.837 32.13 0.937
NR 30.68 0.909 30.02 0.896 14.34 0.457 29.30 0.916 34.62 0.945 26.36 0.844 27.55 0.828 32.34 0.939
CID 28.77 0.881 30.24 0.880 19.87 0.619 32.54 0.921 32.09 0.931 26.82 0.845 28.39 0.846 33.85 0.947

CLAIO 30.02 0.905 30.15 0.880 25.57 0.823 34.03 0.967 33.81 0.939 28.71 0.860 30.38 0.896 34.01 0.950

CLGID 30.68 0.907 31.15 0.906 26.91 0.858 35.69 0.974 35.23 0.944 30.22 0.882 31.65 0.912 34.30 0.953
CLGID† 29.76 0.894 31.17 0.907 26.47 0.849 35.22 0.972 35.15 0.942 30.19 0.881 31.33 0.908 34.34 0.955
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Fig. 7: Generalization performance variance on unseen SPA-data during training on a stream of six datasets. We showcase the
top four methods. The three charts from left to right represent using MFDNet [13], Restormer [28], and MPRNet [29].

TABLE V: Memory and generalization performance on two
alternative six-dataset sequences using MPRNet [29].

Training Sequence Methods
Avg Memory SPA-data

PSNR SSIM PSNR SSIM

1400-100L-1200M-100H-1200H-1200L

Individual 31.72 0.915 – –
SF 28.16 0.851 30.01 0.923

PIGWM 29.01 0.875 33.24 0.940
NR 27.94 0.834 33.60 0.947

CLGID 31.92 0.919 34.29 0.955
CLGID† 31.51 0.913 34.21 0.951

100L-100H-1400-1200M-1200L-1200H

Individual 31.72 0.915 – –
SF 22.10 0.705 28.12 0.907

PIGWM 24.51 0.778 31.11 0.920
NR 26.48 0.813 30.23 0.914

CLGID 31.12 0.914 34.45 0.957
CLGID† 30.60 0.911 34.33 0.955

are introduced, highlighting their limited memory capacity and
inability to accumulate knowledge effectively.

To provide a comprehensive evaluation, we select one
representative six-dataset sequence for the main analysis. This
sequence integrates diverse data sources and rain patterns,
introducing substantial distribution shifts that serve as a strong
testbed for evaluating continual knowledge accumulation.
While exhaustive enumeration of all possible permutations
is infeasible, we report results on two alternative six-dataset
sequences using MPRNet: 1400-100L-1200M-100H-1200H-
1200L and 100L-100H-1400-1200M-1200L-1200H, as shown
in Table V. Our method maintains superior performance across
these variations, reinforcing the robustness of our framework.

D. Ablation Study

Validation on the training speedup algorithm. CLGID†

represents the version of CLGID that utilizes the proposed
similarity-based training speedup algorithm. Fig. 8 showcase
the ratio of total training iterations of CLGID† compared
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Fig. 8: Training iteration ratios of CLGID† compared with CLGID training on a stream of four datasets across four sequences.
Each data point in the plots represents the similarity calculated between the current dataset and the previously learned dataset
with the same color.

(a) Comparison between CLGID and 𝐂𝐋𝐆𝐈𝐃♢ in terms of GAN training and storage cost as the number of datasets increases.

(b) Comparison between CLGID and 𝐂𝐋𝐆𝐈𝐃¶ in terms of GAN replay cost as the number of datasets increases.

Fig. 9: Comparison of GAN training, storage, and replay costs between CLGID and its variants, CLGID♢ and CLGID¶, on a
four-dataset stream across four sequences. The y-axis represents the number of times.

TABLE VI: Memory and generalization performance of
CLGID and its variants CLGID♢ and CLGID¶ across four
four-dataset sequences using MPRNet.

Training Sequence Methods
Avg Memory SPA-data

PSNR SSIM PSNR SSIM

1400-1200M-100H-100L

CLGID 31.73 0.916 33.56 0.945

CLGID♢ 31.11 0.908 33.40 0.943

CLGID¶ 31.70 0.915 33.50 0.945

1400-100L-1200M-100H

CLGID 32.08 0.921 34.26 0.951

CLGID♢ 31.44 0.909 34.03 0.948

CLGID¶ 32.08 0.920 34.27 0.951

100L-100H-1400-1200M

CLGID 31.26 0.916 34.39 0.953

CLGID♢ 30.20 0.900 34.21 0.951

CLGID¶ 31.25 0.917 34.36 0.953

100H-100L-1400-1200M

CLGID 31.04 0.909 34.60 0.956

CLGID♢ 30.49 0.905 34.20 0.952

CLGID¶ 31.02 0.908 34.61 0.955

with CLGID. Training on a stream of four datasets in four
different sequences, CLGID† achieves an average reduction
of 44% in total training iterations and 42% in total training
time. The varying reductions in total training iterations and
training time are attributable to the time required to calculate
similarity. Furthermore, as shown in Tab. I-III and Fig. 4-6, we
can observe that CLGID† achieves comparable memory and
generalization performance compared to CLGID. The above
observations underscore the algorithm’s efficacy to shorten the
training time without compromising the de-raining network’s
memory generalization ability, resulting in low training costs.

Validation of GAN scalability. CLGID♢ and CLGID¶

denote variants of the proposed CLGID framework that incor-
porate the similarity-based selective GAN training and GAN-
replayed data reuse mechanisms, respectively. We validate
their effectiveness using MPRNet on four distinct four-dataset
sequences. The experimental results are presented in Fig. 9 and
Tab. VI. It is evident that both CLGID♢ and CLGID¶ signifi-
cantly enhance the scalability of the framework compared with
the original CLGID. Specifically, as the number of datasets
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TABLE VII: Analysis of the efficacy of each CLGID com-
ponent in training on the 1400-100L-1200M-100H sequence
using MPRNet [29].

w/o both w/o Lreplay w/o Lconsist w both

Rain1400 28.33 / 0.876 29.64 / 0.891 29.87 / 0.900 30.76 / 0.911
Rain100L 35.98 / 0.974 36.88 / 0.974 36.26 / 0.970 37.33 / 0.980

Rain1200M 26.76 / 0.844 27.07 / 0.846 29.18 / 0.874 31.23 / 0.896
Rain100H 29.12 / 0.898 28.58 / 0.892 28.93 / 0.894 28.99 / 0.895

SPA-data 32.89 / 0.939 33.68 / 0.943 33.86 / 0.947 34.26 / 0.951

TABLE VIII: Analysis of hyper-parameter λ in training on the
1400-100L-1200M-100H sequence using MPRNet [29].

λ = 0.1 λ = 0.5 λ = 1.0 λ = 2.0 λ = 5.0

Rain1400 29.91 / 0.901 29.80 / 0.902 30.76 /0.911 29.75 / 0.899 29.82 / 0.897
Rain100L 37.08 / 0.975 37.19 / 0.976 37.33 / 0.980 37.10 / 0.976 37.07 / 0.973

Rain1200M 28.35 / 0.848 29.41 / 0.860 31.23 / 0.896 30.26 / 0.876 28.47 / 0.861
Rain100H 28.62 / 0.892 28.79 / 0.895 28.99 / 0.895 28.74 / 0.892 28.73 / 0.891

SPA-data 34.03 / 0.947 34.07 / 0.948 34.26 / 0.951 33.84 / 0.943 33.70 / 0.942

increases, CLGID♢ achieves an average reduction of over
50% in GAN training FLOPs, training time, and parameter
storage. Meanwhile, CLGID¶ reduces the number of GAN
inference calls required for replay by an average of 26.9%,
thereby decreasing the overall replay-related FLOPs and time
consumption. In terms of performance, CLGID♢ exhibits a
slight degradation in memory and generalization, but it still
significantly outperforms all other SOTA methods. CLGID¶

maintains nearly the same level of memory and generalization
as the original CLGID, as the replay data reuse strategy does
not incur meaningful information loss during training.

Validation on each framework component. To validate the
effectiveness of each loss function, we train our method under
circumstances that remove replay loss and consistency loss in
a successive manner. The results are shown in Table VII, and
it is evident that each loss contributes to the promotion of
memory performance on training datasets and generalization
performance on the real-world dataset. The proposed CLGID
achieves the best performance.

Validation on hyper-parameter λ. We conduct ablation
studies to verify the hyper-parameter λ of balancing the two
loss terms: the interleave loss, and consistency loss. The
experiment results are illustrated in Table VIII. We found
that excessively large or small hyper-parameter can lead to an
imbalance between the two losses during optimization, result-
ing in a decrease in memory and generalization performance.
Considering the trade-off, we ultimately set λ to 1 through a
comprehensive search, thereby achieving optimal memory and
generalization performance.

Validation on framework stability. To validate the stability
of the proposed framework, we conduct experiments using all
three de-raining networks and perform validation under one
four-dataset stream (1400-1200M-100H-100L). We perform
10 independent runs and report the mean and standard devia-
tion of PSNR and SSIM for both memory and generalization
performance. As shown in Tab. IX, the standard deviation of
PSNR remains below 0.10 dB, and that of SSIM is less than
0.003 across all settings. These variations are considerably
smaller than the observed performance differences between

TABLE IX: Stability analysis of the framework. Mean and
standard deviation of performance over 10 runs are reported.

Training Sequence Methods
Avg Memory SPA-data

PSNR SSIM PSNR SSIM

1400-1200M-100H-100L

MFDNet 31.93±0.05 0.923±0.002 34.12±0.02 0.949±0.001

Restormer 32.48±0.06 0.927±0.002 34.04±0.01 0.948±0.000

MPRNet 31.69±0.07 0.916±0.001 33.54±0.02 0.946±0.001

TABLE X: Comparison with CL methods using MFDNet [13]

Training Sequence Metrics EWC MAS LwF CLGID CLGID†

1400-1200M-100H-100L Avg Mem 24.73 23.23 24.05 31.94 31.58
SPA-data 28.19 27.77 28.44 34.12 34.06

1400-100L-1200M-100H Avg Mem 23.74 26.68 23.03 31.72 31.26
SPA-data 28.51 28.41 27.43 34.42 34.24

100L-100H-1400-1200M Avg Mem 26.33 27.18 20.87 31.27 30.91
SPA-data 26.87 28.13 26.45 34.20 34.09

100H-100L-1400-1200M Avg Mem 22.26 23.03 25.32 31.32 31.09
SPA-data 28.26 28.24 29.56 33.96 33.82

CLGID and competing methods, indicating that the influence
of randomness is negligible. The results confirm that our
framework is stable.

Comparison with general CL methods. Table X reports
the results of three representative general continual learn-
ing (CL) approaches, including EWC [54], MAS [66], and
LwF [67], on a stream of four datasets. All three show clear
performance drops compared with CLGID. The main reason
is that these general CL methods are not customized for the
low-level de-raining task, making them poorly matched to its
characteristics. EWC and MAS estimate parameter importance
via Fisher information or output sensitivity, under assump-
tions suited to preserving class-discriminative features. In de-
raining, however, performance depends on many dense, pixel-
wise filters that model rain orientation, density, and scale; these
estimates become noisy and either over-constrain adaptation
or fail to protect critical filters, causing forgetting. While both
LwF and CLGID adopt distillation, the key difference is the
choice of inputs. LwF operates on current inputs that scarcely
activate knowledge associated with previous degradations,
providing limited constraint on their parameters and thus
allowing forgetting. CLGID instead distills on replayed inputs
embedding previous degradations, ensuring strong activation
of the relevant pathways to retain prior capabilities while
accommodating new backgrounds.

Discussion on the effect of training order. To examine the
potential influence of dataset order, we conduct experiments on
12 permutations of four datasets and evaluate generalization
performance on SPA-data, with rain severity approximately
ranked as 1400 < 100L < 1200M < 100H. Several tendencies
emerge from the results, as shown in Table 10. First, orders
progressing from lighter to heavier rain often achieved higher
scores, e.g., 1400-100L-1200M-100H (34.42 dB) vs. 100H-
1400-1200M-100L (33.89 dB), which may relate to curriculum
learning, where gradually increasing task difficulty helps the
model build stable feature representations. Second, large fluc-
tuations in dataset difficulty within the sequence may coincide
with performance drops. Finally, starting with the difficult
dataset also tend to weaken generalization, e.g., 100H-100L-
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Fig. 10: Generalization performance (PSNR on SPA-data) for
12 training orders of four datasets using MFDNet [13], with
bars grouped by the first dataset in the sequence.

TABLE XI: Comparison with the Mix-up strategy using MFD-
Net [13]. Results of CLGID and CLGID† are averaged over
the four training sequences in Table I.

Methods Rain1400 Rain1200M Rain100H Rain100L SPA-data

Individual 31.79 / 0.920 32.24 / 0.920 27.70 / 0.886 36.16 / 0.978 –
CLGID 31.24 / 0.918 31.82 / 0.910 27.15 / 0.869 36.04 / 0.977 34.18 / 0.950
CLGID† 31.11 / 0.914 31.10 / 0.901 26.90 / 0.857 35.73 / 0.975 34.05 / 0.948

Mix-up 32.03 / 0.925 31.10 / 0.900 25.71 / 0.840 34.53 / 0.961 33.76 / 0.947

1400-1200M (33.96 dB). While exceptions exist, these trends
suggest that smooth, curriculum-like order can be optimal.

Comparison with mix-up strategy. We further evaluate
a mixed training strategy (Mix-up), where the de-raining
network is trained on a combined set of multiple datasets rather
than sequentially. As shown in Table XI, Mix-up yields higher
performance on Rain1400 but drops on the other datasets and
shows inferior generalization to SPA-data. This is attributed to
severe data imbalance: Rain1400 contains far more samples,
causing its gradients to dominate optimization and bias the
solution toward its domain. Consequently, the final model
under-represents smaller datasets in the learned feature space,
memorizes the dominant domain while failing to integrate
knowledge from under-represented ones, and this insufficient
integration across datasets results in degraded generalization
to real-world rainy scenes.

V. CONCLUSION

This paper presents a new generalized de-raining frame-
work, CLGID, which empowers de-raining networks to ac-
cumulate knowledge from increasingly abundant de-raining
datasets, improving their ability to generalize to unseen real-
world scenes. Our inspiration stems from the human brain’s
complementary learning system, which enables humans to
constantly learn and memorize a stream of perceived events
and gradually acquire the generalization ability to unseen
situations across memorized events. This remarkable human
ability closely aligns with our research goals. Extensive exper-
iments validate that CLGID effectively accumulate de-raining
knowledge and delivers superior de-raining generalization per-
formance in unseen real-world rainy scenes.
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