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I. FRAMEWORK COMPLEXITY ANALYSIS

We analyze how the cost in terms of parameters, computa-
tion, and time scales with the number of integrated datasets
N . Let Dn denote the n-th dataset, with Mn image pairs.
The CLGID training framework consists of three core stages
at each step: training a GAN Gn on Dn, generating replay
data D̂n from earlier GANs {G1, · · · , Gn−1}, and training
the de-raining network on Dn ∪ D̂n.
GAN Complexity Analysis
Parameter cost: Each new dataset adds one GAN. If a single
GAN contains PG parameters, total parameter cost scales
linearly:

PGAN = N · PG

Training FLOPs and time: Assume GANs are trained for
EG epochs with per-batch (BG) FLOPs cost F Train

G and time
cost tTrain

G . Then for each stage:

FLOPs(n)GAN = EG · Mn

BG
· F Train

G ,

T
(n)
GAN = EG · Mn

BG
· tTrain

G .

Accumulated over N datasets:

FLOPsGAN =

N∑
n=1

EG · Mn

BG
· F Train

G ,

TGAN =

N∑
n=1

EG · Mn

BG
· tTrain

G .

Replay FLOPs and time: At stage n, replay dataset D̂n is
generated to match the size of the current dataset Tn, i.e.,
|D̂n| = Mn. The samples are drawn by uniformly sampling
from each of the n − 1 GANs. Each sample requires FLOPs
FR and time TR:

FLOPs(n)Replay = Mn · FR, T
(n)
Replay = Mn · TR.

Accumulated over N datasets:

FLOPsReplay =

N∑
n=1

Mn · FR, TReplay

N∑
n=1

Mn · TR

De-raining Network Complexity Analysis
Parameter cost: The de-raining backbone remains fixed
throughout training. Let it have PD parameters:

PD-net = PD (constant w.r.t. N ). (1)

Training FLOPs and time: Let F Train
D and tTrain

D be the FLOPs
and time cost for per-batch (BD) forward–backward pass.
With ED training epochs:

FLOPs(n)D-net = ED · Mn

BD
· F Train

D ,

T
(n)
D-net = ED · Mn

BD
· tTrain

D .

Accumulated over N datasets:

FLOPsD-net =

N∑
n=1

ED · Mn

BD
· F Train

D ,

TD-net =

N∑
n=1

ED · Mn

BD
· tTrain

D .

II. THE PROOF OF THE TOTAL REPLAY COST IN
GAN-REPLAYED DATA REUSE

Suppose the dataset sizes are upper bounded: Mn ≤ Mmax,
and denote Mmin = minn Mn > 0. Then we can derive an
upper bound:

∆i,n ≤ max

(
0,

Mmax

n− 1
− Mmin

n− 2

)
.

More importantly, the dominant term across all n is:

∆n−1,n =
Mn

n− 1
≤ Mmax

n− 1
.

Therefore, the total cost satisfies:

CN ≤
N∑

n=2

(
(n− 2) · εn +

Mmax

n− 1

)
,

where

εn = max

(
0,

Mmax

n− 1
− Mmin

n− 2

)
.

Note that εn vanishes for sufficiently large n. Specifically,
solving

Mmax

n− 1
≤ Mmin

n− 2
⇐⇒ Mmax

Mmin
≤ n− 1

n− 2
,

gives a threshold

N0 =

⌈
1 +

Mmax

Mmin −Mmax

⌉
.
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(a) Input (b) SF (e) DPL(c) PIGWM (d) NR (f) CLGID (g) GTSPA-data

Real-internet (a) Input (b) SF (c) PIGWM (d) NR (e) DPL (f) CLGID

(a) Input (b) SF (e) DPL(c) PIGWM (d) NR (f) CLGID (g) GTSPA-data

Real-internet (a) Input (b) SF (c) PIGWM (d) NR (e) DPL (f) CLGID

(a) Input (b) SF (c) PIGWM (d) NR (f) CLGID (g) GTSPA-data

Real-internet (a) Input (b) SF (c) PIGWM (d) NR (f) CLGID

Fig. 1: Visual quality comparisons of different methods on SPA-data [1] and Real-internet [1]. From top to bottom: MFDNet [2],
Restormer [3], and MPRNet [4] are used as the de-raining networks. Ground truth is available for SPA-data but not for Real-
internet. Note that DPL is not applicable to non-transformer-based networks such as MPRNet.

above which εn = 0 for all n ≥ N0. Thus,

N∑
n=2

(n− 2)εn ≤
N0∑
n=2

(n− 2)εn ≜ C0,

where C0 is a finite constant independent of N . Therefore, we
can treat the first summation as a constant. The second term
forms a harmonic sum:

N∑
n=2

Mmax

n− 1
= Mmax

N−1∑
k=1

1

k
= Mmax ·HN−1,

where HN−1 ≤ ln(N − 1) + 1. Therefore,

CN = O(Mmax logN).

III. QUANTITATIVE COMPARISONS OF DIFFERENT
METHODS

In addition to quantitative results, we also provide quali-
tative assessments of various methods on SPA-data [1] and
Real-internet [1], after training on the 1400-1200M-100H-
100L sequence, as shown in Fig. 1. We can observe that other
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4 

Fig. 2: Training loss curve under the sequence 1400-1200M-100H-100 using MPRNet [4].

methods struggle to eliminate heavy rain streaks and those
resembling the background’s texture. Some artifacts persist in
the de-raining outcomes, and the background details appear
blurred. In contrast, our CLGID yields the most visually
appealing results.

IV. VISUALIZATION OF LOSS CONVERGENCE

To verify the convergence behavior of the proposed frame-
work, we provide the training loss curve under a representative
setting (MPRNet + 1400-1200M-100H-100L), as shown in
Fig. 2. The curve clearly demonstrates that the training process
exhibits smooth and stable convergence. Within each dataset
training phase, the loss decreases steadily, showing consistent
optimization. Moreover, at the transition between datasets,
there is no sign of abrupt increase, conflict, or collapse in
the loss, indicating that the framework handles dataset shifts
in a stable manner.
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