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SkyFind: A Large-Scale Benchmark Unveiling
Referring Expression Comprehension for UAV
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Abstract—Unmanned aerial vehicles (UAV) are increasingly deployed to assist humans in diverse tasks, where understanding human
intentions is critical to effective collaboration. Referring expression comprehension (REC) links language to visual targets, allowing UAV

to recognize human-intended targets of interest, thereby supporting subsequent actions. However, existing REC research is almost
exclusively confined to ground-based scenarios, leaving aerial scenarios largely unexplored. In this paper, we formally define
UAV-based REC as a new research problem and highlight its unique challenges, including abundant background interference, small
target size, and complex referring relations. To enable systematic study, we introduce SkyFind, a large-scale dataset with one million
high-quality target—expression pairs, providing a solid foundation. In addition, we propose AerialREC, a baseline framework that
reduces background interference in UAV imagery by searching for a potential target region before localization. We establish benchmark
results on SkyFind using ten representative REC methods and validate the effectiveness of the AerialREC framework. The dataset is

publicly available at: https://github.com/wangkunyu241/SkyFind.

Index Terms—Unmanned Aerial Vehicles, Referring Expression Comprehension, Benchmark and Dataset.

1 INTRODUCTION

NMANNED aerial vehicles (UAV), owing to their flex-
Uibility and versatility, have been widely deployed in
various real-world scenarios to assist humans in diverse
tasks [1]-[6]. To effectively support such missions, UAV
require not only autonomous flight and navigation capa-
bilities [7], [8] but also the ability to understand human
intentions and objectives, which is essential for subsequent
actions. For example, in security operations [9], UAV need to
first recognize specific individual or object before proceed-
ing with subsequent tracking and surveillance; in search-
and-rescue missions [10], [11], UAV need to confirm the
target of interest before carrying out close-range rescue
operations or delivering supplies. These cases highlight that
accurately understanding human intent is a prerequisite
for mission success. Since language is the most direct and
natural medium through which humans convey their inten-
tions, it becomes a critical source of information for UAV
to understand task objectives. Within this context, refer-
ring expression comprehension (REC) [12], which connects
linguistic expressions with visual targets, emerges as an
essential capability. By enabling UAV to ground natural
language descriptions in specific targets within the visual
scene, REC enhances their capacity to interpret human
intent and perform subsequent tasks.

Despite significant progress in REC, current datasets,
such as RefCOCO and RefCOCO+ [13], are primarily col-
lected in everyday ground-level scenarios. These datasets
are inadequate for supporting the development of REC in
aerial scenarios. To bridge this gap and facilitate research
in this realm, we introduce SkyFind, a large-scale dataset
tailored to UAV-based REC, comprising one million high-
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A person in a white top stands on the beach at the water's edge,
with two other people to their right, facing the sea with their back
to the forest.

Fig. 1: Demo of UAV-based REC. A human provides a
textual description of a specified target, and the UAV com-
prehends the expression and localizes the target accordingly.

quality target-expression pairs. As shown in Fig.[I} a human
provides a free-form textual description, which the UAV
comprehends and localizes the specified target in the UAV-
captured image. The SkyFind dataset establishes a founda-
tion for systematic investigation of REC in aerial scenarios.
The examples of the dataset are shown in Fig.

For the construction of the SkyFind dataset, we collect
images from both publicly available UAV datasets and UAV
data mined from the web, ensuring both scale and diversity.
Based on these raw images, we annotate referring expres-
sions together with the bounding boxes of the specified
targets. Leveraging recent advancements in perception and
understanding by large models, we initially utilize large
models as assistants to pre-annotate the data, thereby reduc-
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The white boat is the second-to-last in the
second-to-last row from the bottom, counting
rightward among the boats moored in the
waters above the bridge.

The black sedan parked furthest to the right in
the bottom row on the left side of the frame,
with a white sedan to its left.

The silver sedan is located at the bottom
center-left of the image, with a white dividing
line on its right side and a sidewalk on its left.

The person wearing a red top and trousers,
standing on the right side of the path. This is
the uppermost and farthest right individual in

Located slightly to the left of the center at the
bottom of the frame, a white-roofed blue-green
sedan is parked under a row of small white
buildings, surrounded by containers and other
vehicle. To its right is a black-roofed dark blue
car in the same row.

The pedestrian wearing a light brown top and
black pants is located under the building in the

v
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A white surfboard with red edges tilts
downward horizontally, situated just left of
center in the image, toward the lower half.
Below a blue-and-white striped surfboard, it
appears as the sixth one upward from the
bottom edge.

The figure is situated in the left-central area of
the image, floating alone in the water, distant

upper right; there is a red bench in front of

from a group of bright orange objects in the

the group below.

The silver sedan is located in the third lane
from the right, positioned as the fourth vehicle
from the bottom in this lane. Behind it is a
white sedan, ahead is a white van, and slightly
above and to its right is a blue taxi.

It is the second car driving in the lane from the
bottom of the frame, heading downward.

The person wearing a white shirt and black
pants is positioned on the right side of a blue

taxi, standing next to a red truck carrying cows.

They are the leftmost individual among a row
of three standing people, located in the lower-

them and a platform above.

RN &
The white sedan is located in the furthest-left
lane of the highway, positioned as the third
vehicle counting up from the bottom; it is
directly behind a dark-colored car and ahead
of a grayish-black sedan.

bottom-right corner. It is the rightmost
individual among three black swimmers
positioned above.
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A red umbrella is positioned on the left side of
the sandy beach, among a row of beachside
umbrellas that includes a cluster of green ones
and another cluster with red and green stripes,
near the water's edge.

left corner of the image.

Fig. 2: A glance at the new large-scale SkyFind dataset, comprising over one million high-quality target-expression pairs.

ing the workload of manual annotation from scratch. Then,
we manually refine and re-annotate the pre-annotations to
ensure the high quality of the target-expression data. In
addition to providing essential textual referring expressions,
we also supply audio descriptions generated using text-to-
speech software. This encourages explorations on under-
standing human instructions from speech, providing a more
convenient mode of interaction.

Compared with general REC, UAV-based REC exhibits
three distinct characteristics that introduce significant chal-
lenges: (1) Abundant background interference. The wide
field of view in UAV imagery often leads to scenes with rich
semantic content, containing numerous non-target entities
that resemble the target. Such distracting entities in the
background increase the difficulty of localization. (2) Small
target size. UAV imagery typically follows a “large scene,
small object” pattern, where the target occupies only a
small fraction of the frame. Such target often has blurred
boundary and weak texture, which increase the difficulty
of recognition. (3) Complex referring relations. To identify
a target in cluttered UAV imagery, referring expressions
often incorporate fine-grained details, making them longer,
characterized by more intricate reference relations, and con-
sequently more difficult to comprehend. A more detailed
comparison and discussion can be found in Section 3.1}

In addition to proposing the SkyFind dataset, we present

a baseline framework to address its challenges. Current
REC methods suffer interference from non-target entities
in UAV imagery that are semantically and spatially similar
to the target, leading to confusion and degraded localiza-
tion performance. To address this, we propose AerialREC,
which formulates target localization as a two-step process.
Specifically, we introduce a preliminary search step to ini-
tially identify a potential target region, providing a more
focused area and explicitly reducing irrelevant background
interference. Subsequently, we concentrate on this clearer
region with less interference to precisely localize the target,
thereby enhancing accuracy. Experiments conducted with
two advanced REC methods demonstrate that our frame-
work yields substantial performance gains on the SkyFind
dataset, validating its effectiveness in UAV scenarios.

Overall, the contributions of this paper are three-fold:

o We are the first to push the boundary of REC into aerial
scenarios, formally introducing UAV-based REC as a new
research problem and highlighting the unique challenges
it poses compared with general REC.

o We construct SkyFind, a large-scale dataset with one mil-
lion high-quality target-expression pairs, which is three
orders of magnitude larger than existing counterparts,
providing a solid foundation for systematic research on
UAV-based REC.

o We propose AerialREC, a baseline framework that miti-
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TABLE 1: Comparative analysis with existing REC datasets. "Avg Length” denotes average expression length, "Avg Img
Res” denotes average image resolution, "Avg O/I Ratio” denotes average object area to image area ratio, "Anno’ denotes

annotation method, 'LM” denotes large models.

Dataset ‘ Aera Img Obj Expr  AvgLlength Expr Type AvglmgRes AvgO/IRatio Audio Anno
Referlt [14] Life 19,894 96,654  130.5K 3.46 Free 485x592 14.65 % X Manual
RefCOCO |[13] Life 26,711 50,000 142.2K 3.61 Free 480%583 9.05 % X Manual
RefCOCO+ [13] Life 19,992 49,856  141.5K 3.53 Free 485x592 8.82 % X Manual
RefCOCOg [15] Life 26,711 54,822 85.7K 8.93 Free 480x583 8.93 % X Manual
CLEVR-Ref+ [16] | Synthetic ~ 85,000 492,727  998.7K 22.40 Free 480%320 2.70 % X Simulator
Talk2Car [17] Vehicle 9,217 10,519 11.9K 11.01 Free 1600900 3.65 % X Manual
Cops-Ref [18] Life 75,299 148,712  148.7K 14.40 Template 521x432 13.10 % X Manual
KB-Ref [19] Life 16917 43,284 432K 13.32 Free 500x413 18.20 % X Manual
gRefCOCO [20] Life 19,994 80,287  278.2K 13.22 Free 485x592 8.82 % X Manual
SK-VG [21] Movie 4,000 39,182 39.1K 4.46 Free 1601 x 848 12.00 % X Manual
InDET [22] Life 120,604 908,410  3.6M 6.20 Free 456x 548 15.94 % X LM
SkyFind | Uav 35599 352,910 1.0M 27.12 Free 1952x1155 0.76 % v LM+Manual

gates interference from similar non-target entities in UAV
imagery by introducing a preliminary search step, improv-
ing target localization accuracy.

The remainder of this paper is organized as follows.
Section[2 provides a comprehensive review of relevant liter-
ature. Section [3|elaborates on the uniqueness of UAV-based
REC, explains the necessity for constructing the SkyFind
dataset, and describes the construction process along with
the statistical analysis. Section {4| presents our proposed
baseline framework AerialREC. Section 5 establishes bench-
mark results on the SkyFind dataset and validates the ef-
fectiveness of the AerialREC framework. Finally, Section [f]
concludes this work and discusses potential future research
directions.

2 RELATED WORK
2.1 Referring Comprehension Datasets

In the deep learning era, benchmark datasets [23], [24] have
become the critical infrastructure for the computer vision
research community. Thanks to the publicly referring ex-
pression comprehension (REC) datasets, the REC task have
evidenced notable progresses. Referlt [14] is the first dataset
comprising natural language expressions referring to objects
in real-world scenes, pioneering the development of REC in
diverse contexts. Subsequently, RefCOCO and RefCOCO+
[13] are introduced, both derived from the MSCOCO dataset
[25], accompanied by concise phrase descriptions. RefCOCO
imposes no restrictions on language expressions, whereas
RefCOCO+ prioritizes purely appearance-based descrip-
tions, prohibiting the use of location words. RefCOCOg
[15], also originating from MSCOCO, stands out for its
utilization of longer language expressions compared to its
predecessors. CLEVR-Ref+ [16] emerges as a synthetic di-
agnostic dataset for REC, addressing bias issues, and fa-
cilitating the assessment of models’ intermediate reasoning
processes. Talk2Car [17] emerges as the first object referral
dataset meticulously tailored for self-driving cars, providing
natural language commands for actions related to urban
street scene objects, built upon the nuScenes [26] dataset.
Cops-Ref [18] introduces intricate and compositional expres-
sions, challenging models to demonstrate complex reason-
ing abilities beyond simple object recognition, attributes,
and relations. KB-Ref [19] pushes the boundaries of REC

models by necessitating the incorporation of commonsense
knowledge in identifying referent objects. It encourages
models to explore information not only from images but
also from external knowledge. gRefCOCO [20] extends the
classic REC by allowing expressions to describe any number
of target objects, including multi-target expressions and no-
target expressions. SK-VG [21] incorporates reasoning over
scene knowledge, i.e., long-form text-based stories, along-
side image content and referring expressions, necessitating
models to process image, scene knowledge, query triples
for comprehensive understanding. InDET [22] proposes a
data generation pipeline that relies on foundational models
to generate instructions, paving the way for enhancing data
scale. However, existing datasets primarily focus on ground-
based scenarios, while aerial scenarios have been largely
overlooked. This setting is in fact highly valuable, as it
enables UAV to better understand human intentions and
facilitate human-UAV interaction. To fill this gap, we for-
mally introduce UAV-based REC and construct the million-
scale SkyFind dataset, providing a foundation to advance
research in this direction. Detailed comparisons with prior
datasets are provided in Table[l}

Beyond the above, WebUAV-3M [27] presents a dataset
with annotations akin to our work. However, WebUAV-3M
is tailored for the UAV-based tracking task, i.e., tracking
targets in UAV videos. For each tracked object in the videos,
it supplements this by furnishing a language specification,
totaling approximately 4.5K target-expression annotations.
In contrast, our proposed SkyFind dataset primarily focuses
on the UAV-based REC task, comprising 1.0M pairs of
target-expression annotations. The quantity, diversity, and
comprehensiveness of both objects and expressions in our
dataset far exceed WebUAV-3M.

2.2 Referring Comprehension Methods

REC predicts a bounding box that accurately encompasses
the target object in an image based on a given referring
expression. Early works often follow a two-stage pipeline.
Specifically, two-stage models [13], [28]-[31] first detect the
salient regions of an image and then treat the REC task as
a region-expression ranking problem. Despite their consid-
erable success, these two-stage methods exhibit significant
drawbacks in terms of model efficiency and generalization.
To address these issues, one-stage REC [32]-[42] has recently
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——
The person wearing a white shirt is standing near the lower
left edge of the central football field circle, slightly closer to
the lower edge of the circle than other players, located in the
lower-left section of the field.

RefCOCO/+/g

Person with blue jacket.

(a) Abundant Background Interference

Located slightly to the left of the center at the bottom of the
frame, a white-roofed blue-green sedan is parked under a
row of small white buildings. To its right is a black-roofed
dark blue car in the same row, fully visible without being
cropped at the bottom; the row contains only these two cars.

A brown love seat next to a floor lamp.

(b) Small Target Size

The silver SUV is located
, positioned

——

in the
and
is slightly to its
is on its . It is stopped

, and
before the red light's stop line,

Guy in black shirt

(c) Complex Referring Relations

Fig. 3: Comparison between general REC and UAV-based REC, where UAV-based REC faces three unique challenges of
abundant background interference, small object size, and complex referring relations.

become a popular research direction. By eliminating the
region detection and image-text matching steps inherent in
multi-stage modeling, one-stage models significantly reduce
inference time. However, they often exhibit sub-optimal
REC performance compared to two-stage methods, primar-
ily due to their limited reasoning capabilities. In response,
recent advancements have focused on enhancing the rea-
soning capabilities of one-stage REC. Various novel multi-
modal networks have been proposed to improve the per-
formance of one-stage REC models [43]-[51]. For example,
ReSC introduces a recursive sub-query construction
framework to enhance one-stage visual grounding, over-
coming limitations in modeling long and complex queries.
TransVG offers an elegant perspective for capturing
intra- and inter-modality context uniformly, formulating
visual grounding as a direct coordinates regression prob-
lem. More Recently, researchers have redefined REC as a
sequence prediction task, leading to the development of
several novel sequence-to-sequence frameworks. For exam-
ple, SeqTR represents the bounding box of the referent
with a sequence of discrete coordinate tokens, which are
predicted via a Transformer architecture. PolyFormer
formulates REC and RES tasks as a sequence-to-sequence
prediction problem, generating sequential polygon vertices
and bounding box corner points. Besides, recent advances in
large-scale vision-and-language (V&L) pretraining have led
to the emergence of powerful large models [52]]-[63], which
demonstrate strong generalization across a wide range of
downstream V&L tasks, including REC. These models are
trained with millions or even billions of image-text pairs
and contain a large number of parameters, enabling them to
achieve zero-shot performance on diverse benchmarks.
Despite progress, no existing method has been specif-
ically developed for REC in aerial scenarios. Compared
with general REC, UAV-based REC introduces three unique

challenges: abundant background interference, small target
size, and complex referring relations. These challenges sig-
nificantly increase the difficulty of REC and highlight the
need for dedicated methods.

3 SKYFIND DATASET
3.1 Uniqueness

Compared with general REC that are typically performed in
ground-based everyday scenarios, UAV-based REC demon-
strates three distinctive characteristics that pose challenges:

Abundant Background Interference. Due to the wide field
of view in UAV imagery, the captured scenes typically span
large areas and contain abundant semantic information with
diverse entity distributions. Consequently, numerous non-
target objects often appear that resemble the referred target
in category, appearance, or spatial location. Such entities
exhibit strong referential or semantic similarity to the target,
leading to confusion and interference, thereby degrading
performance. For UAV-based REC, accurately localizing the
referred target within such complex and distracted back-
ground constitutes a core challenge. As shown in Fig. 3| (a),
compared with Refcoco/+/g, numerous non-target entities
with semantic or referential similarity to the target appear
in the image background of the SkyFind dataset, such as
the person in a white T-shirt or the person near the edge
of the central football field circle. This requires the model to
perform fine-grained discrimination and precise localization
within the scene.

Small Target Size. A notable characteristic of UAV imagery
is the coexistence of large scenes with small targets. Due
to the high imaging altitude, the referred target occupies
only a minute portion of the entire image, leading to blurred
boundaries and insufficient texture details. As a result, the
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TABLE 2: Models trained on general REC datasets struggle
with the SkyFind dataset, revealing the domain gap and
the necessity of SkyFind dataset. ‘RefC” denotes RefCOCO,
RefCOCO+, and RefCOCOg.

5

TABLE 3: Introduction to the 14 publicly available UAV
datasets. 'Data’” represents the data type, and "Anno’ rep-
resents the annotation type.

Dataset Task Data Anno Target class
; DroneVehicle |64 Detect Image Box Car, Bus, Truck, Van, Freight Car
i SkyFind Test 8 g
Method Train Data SeaDronesSee [65 Detect Image Box Swimmer, Floater, Life Jacket, Boats
bU@5 A IoU@mean A ' 8 )
- . ] Pedestrian, Person, Car, Van, Bus, Truck,
RefTR [44] RefC 5.03 +17.65 2.54 +10.92 VisDrone2019 |66] Detect  Image  Box Motor, Bicycle, Awningtricycle, Tricycle
: SkyFind Train ~ 22.68 ' 1346 ' UAVDT [67] Detect Image Box Car, Vehicle, Truck, Bus
3 RefC 5.96 2.60 ] . Person, Car, Van, Truck, Bike,
TransVG [45] SkyFind Train ~ 22.00 +16.04 11.90 +9.30 AU-AIR |68] Detect Video Box Motorbike, Bus, Trailer
APRK i B
VGIR [ RefC 6.01 1415 270 783 C 169] Count Video 0X Car
’ SkyFind Train ~ 20.16 ' 10.55 ' MOBDrone [70] Detect Video Box Person, Boat, Wood,
1 Life Buoy, Surfboard
VLVTG [49] SkyFIi{r?cflCTrain 253"7502 +17.82 123.2;2 +11.08 Okutama-Action [71] Detect Video Box — P:lr(nan —
1 . edestrians, Bikers, Go arts,
] RefC 5.65 237 Stanford Drone [72] Track Video Box Cars, Buses, Skateboarders
SeqTR [47] R . +20.09 +10.20
: SkyFind Train  25.74 12.57 Vegetation, Dirt, Gravel, Rocks, Water,
Semantic Drone |73] Segment Image Mask Pool, Person, Dog, Car, Bicycle,
QRNet [46] RefC 6.02 +20.19 3.81 +7.41 Roof, Wall, Fence, Window, Door
] SkyFind Train = 26.21 ’ 11.22 ’ T -
UAVid [74] Segment Image Mask Building, Road, Low Vegetation,
i 1 Tree, Car, Human, Clutter
SimREC [51 RefC 509 L1641 3.54 +8.61
] SkyFind Train ~ 21.50 ' 12.15 ' UDD [75] Segment Image Mask Vegetation, Building, Free Space
; RefC 6.77 4.47 UVSD |76] Segment Image Mask Vehicle
PolyFormer [50] g1 pind Train 2550 *187% 1644 117 Sky, Road, Vegetation, Car,

target’s feature is sparse and incomplete. Meanwhile, other
semantically salient regions in the large scene compete
for visual attention, further attenuating the prominence of
the already inconspicuous target. As shown in Fig. 3| (b),
compared with the large targets in Refcoco/+/g, the small
targets in the SkyFind dataset exhibit indistinct boundaries
and blurred details at the feature level, such as vehicle
contours and structural structures, thereby making precise
localization of the referred target more difficult.

Complex Referring Relations. The complexity of UAV
imagery naturally gives rise to highly intricate referring
expressions. To accurately identify a target, the language of-
ten incorporates multi-level descriptions, including relative
spatial relations between the target and reference objects,
absolute spatial relations, categories, and attributes. Such
expressions are typically lengthy and contain multiple se-
mantic elements and dependencies, which makes them con-
siderably more difficult to comprehend than short phrase-
level expressions. As shown in Fig. 3| (c), the expression
in the SkyFind dataset are more complex than that in Re-
fcoco/+/g, exemplified by references to intersection, lane,
median strip, and multiple nearby vehicles used to specify
the target. Such complexity underscores the challenge of
fine-grained expression comprehension in UAV-based REC.

3.2 Necessity

Compared with general REC, UAV-based REC presents
unique challenges, yet existing datasets (e.g., RefCOCO,
RefCOCO+, and RefCOCOg, collectively referred to as
RefC) are built from ground-level everyday scenes and
thus cannot adequately support REC in aerial scenarios.To
validate the necessity of introducing the customized large-
scale SkyFind dataset, we train eight advanced REC meth-
ods separately on RefC and the SkyFind training set, and
evaluate all models on the SkyFind test set. Note that
SkyFind training and test sets are distributionally disjoint

Mask Obstacle, Animal, Boat, Drone,

Construction, Bike, Person

Aeroscapes |77] Segment Video

(see Section xx for details), thus avoiding potential distri-
bution leakage. As shown in Table [2, models trained on
RefC perform significantly worse on the SkyFind test set
compared to those trained on the SkyFind training set. This
substantial performance gap reflects a pronounced domain
shift rooted in fundamental differences between ground-
based and UAV-based scenarios, highlighting the limitations
of existing datasets and the necessity of introducing the
SkyFind dataset.

3.3 Dataset Construction

Data Collection. The SkyFind dataset is primarily sourced
from two channels: publicly available UAV datasets and
UAV videos downloaded from the internet. The former
comprises 14 UAV datasets [64]-[77]], as outlined in Table
The latter comprises UAV videos primarily obtained
from YouTube under Creative Commons licensesﬂ utilizing
keywords such as aerial video, aerial photography, and
drone photography. We have collectively downloaded ap-
proximately 20k raw videos. For video-based UAV datasets
and web-based UAV videos, we initially transform them
into image data by extracting frames from videos and
computing the P-Hash of images, thus reducing data redun-
dancy. Subsequently, all obtained image data is converted
to the HSV color space, and images with average brightness
below or above a specific threshold are eliminated, thereby
conducting initial screening for anomalous images. Finally,
we conduct a manual screening of images, considering the
following criteria: (1) We exclude ambiguous images, such
as those with motion blur, or low resolution, as they fail
to provide clear and abundant semantic information. (2)
We exclude images not taken from the perspective of the
UAV, such as overhead or high-angle shots, to maintain
the dataset’s UAV attributes. (3) We exclude images lacking

1. https:/ / creativecommons.org/licenses /


https://creativecommons.org/licenses/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Q)

Can you give me a description of the
region [378,148,496,228] in the image?

a white tent.

Given a brief description of the red
bounding box, a white tent, can you
expand the description based on its
relative location to the surrounding
environment and objects in the image?

Q)

@ / Human Re-annotate

It appears to enclose a white tent. The tent is relatively small. It is positioned near the edge of the sidewalk, adjacent to the street

where a crowd of people in yellow is gathered.

A relative small white tent is positioned near the

an event or as a temporary structure, possibly for
shelter or as a booth for an outdoor festival or
gathering. The tent's location sug
accessible to pedestrians and is p:
event setup. The scene conveys a busy, eventful
public transport hub,

Please summarize and refine a concise description of
a white tent, describing its appearance, category, and
relative location relation: A relative small white tent
is positioned near the edge of the sidewalk. The tent

suggests it is easily accessible to pedestrians and is
part of the overall event setup. The scene conveys a
busy, eventful public transport hub.

clative small white

GPT4 Augmentation (Train set)

edge of the sidewalk. The tent is likely set up for

Given an expression referring to a specified

gests it is easily target: It appears to enclose a white tent. The

of the overall tent is relatively small. It is positioned near

e of the sidewalk, adjacent to the street
ere a crowd of people in yellow is gathered.
Your task is to augment the expression by
using a richer and more varied vocabulary,
sentence structures, and descriptions. Ensure
that the refined expression maintains semantic
consistency with the original.

is likely set up for an event or as a temporary
structure, possibly for shelter or as a booth for an
outdoor festival or gathering. The tent's location

Augmentation 1: A small white tent is

situated on the sidewalk. It is positioned
at the edge of the sidewalk, next to a
busy street where a group of people
dressed in yellow is gathered

ent is positioned near the

structure, py

an outdoor fe
Augmentation 2: A petite white tent is
perched on the sidewalk. Positioned

pedestrians

close to the edge of the pavement, it
stands adjacent to the street, where a
throng of people dressed in yellow has
assembled.

Fig. 4: Overview of the LM+Manual annotation pipeline, which integrates CogVLM for basic descriptions, LLaVA
for detailed descriptions, GPT-4 for concise descriptions, human input for re-annotation, and GPT-4 for training set

expression augmentation.

valuable target, such as landscapes or fields, to ensure the
dataset’s efficacy.

Based on the images above, we further extract objects.
For images sourced from existing datasets, we rely on the
provided object annotations. These annotations primarily
include bounding box and mask annotations. To convert
mask-based annotations into box-based annotations, we
initially process the mask by category, encoding each pixel
label corresponding to the target class. Then, we identify
the contour points of connected regions for each class in the
mask image. These contour points provide the necessary
information to determine the bounding box coordinates.
By sorting the horizontal and vertical coordinates of the
contour points, we can extract the minimum and maximum
values, thus standardizing all annotations into box-based
formats. Additionally, we perform box filtering to remove
any outliers, excluding those with top-left coordinates less
than or equal to the bottom-right coordinates. For images
sourced from the internet, we extract objects through man-
ual annotation. The principle of annotation is to ensure that
the objects possess clear semantics, descriptive value, and
can be explicitly described. Finally, we obtain 35,599 and
352,910 high-quality images and objects.

Data Annotation. The significant advancements demon-
strated by large models have underscored their remarkable
efficacy in proficiently executing a wide array of tasks.
This includes tasks such as comprehension and reasoning
for large language models, and grounding and captioning
for large vision-language models. Motivated by these de-
velopments, we initially utilize large models as assistants
to generate expressions for each object as pre-annotations,
thereby reducing the workload of manual annotation from
scratch. The annotation pipeline is shown in Fig. 4]
Specifically, given the bounding box of an object, we first

employ various box-to-caption task templates to generate
prompts that include the bounding box information for
each object. For example, "Give me a description of the
region <bbox> in the picture.” These prompts are then
input into CogVLM to obtain a basic description for the
specified object in the image. Next, we enhance these basic
descriptions with the relative location of the target using
LLaVA [53]. This facilitates more detailed referencing. For
example, "Given a brief description of the red bounding box,
<basic description>, can you expand the description based
on its relative location to the surrounding environment and
objects in the image?” Inspired by [79], we augment the im-
ages inputted to LLaVA with a visual prompt, outlining the
target with a red bounding box to direct LLaVA attention to
the specified object. Upon obtaining a detailed description,
we utilize GPT-4 to meticulously summarize and refine
it, aiming to enhance the overall quality of the detailed
description. We prompt GPT-4 to succinctly summarize, re-
sulting in a concise description, such as: “Please summarize
and refine a concise description of <basic description>,
describing its appearance, category, and relative location
relation: <detailed description>.”

However, the pre-annotations generated by large models
may contain noise. Therefore, we manually re-annotate and
refine all the pre-annotations to ensure the high quality
of the target-expression data. Note that for all processes
involving human, including screening images, annotating
boxes, and re-annotating pre-annotations, we follow a three-
step “Process, Verify, Re-process” workflow. We first divide
the annotation team into three sub-teams and partition the
data requiring manual intervention into three parts. For
each portion of the data, sub-team 1 conducts the initial
processing, sub-team 2 performs verification, and sub-team
3 re-processes any data with issues. By following this work-
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Fig. 5: Statistical analysis of the SkyFind dataset: (a) (b) Proportions of different data sources, by image count and annotated
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visualization of images from training/validation and test sets. (f) T-SNE visualization of origin and GPT-4 augmented

expressions in training set.

flow, the three sub-teams take turns processing the three
portions of the data. For the annotation tool, we use the
VGG Image Annotator (VIA) El

In addition to the essential textual referring expressions,
we also utilize text-to-speech software to produce corre-
sponding audio files. This aims to encourage and facilitate
explorations that integrate visual, linguistic, and audio fea-
tures, thereby further enhancing human-UAV interaction
and user experience. We utilize Google TTS Al E| as our
audio generation tool, integrating diverse tones, timbres,
accents, and voice effects throughout the generation process
to deliver comprehensive audio descriptions.

3.4 Dataset Split

We divide the SkyFind dataset into training, validation, and
test sets. To ensure distributional difference between the
training/validation sets and the test set, which is crucial for
meaningful evaluation, we perform the split based on data
sources. Specifically, our dataset is constructed from web-
crawled aerial images and 14 publicly available datasets.
Among these, only SeaDronesSee and MoBDrone focus
on maritime scenarios, which exhibit clear scene-level dis-
tinctions from the other sources. Therefore, we assign all
target-expression pairs originating from these two datasets
to the test set, resulting in 16,546 samples. The remaining
data are used for training and validation. From these, we

2. https:/ /www.robots.ox.ac.uk/~vgg/software/via/
3. https:/ /cloud.google.com/ text-to-speech

randomly sample 5,000 instances for validation, and use the
rest (331,364 samples) for training.

In addition to ensuring source-level diversity, we further
enrich the training data on the language side. To enhance
the density and coverage of the linguistic space, we em-
ploy GPT-4 [78] to augment the original annotations with
semantically equivalent but lexically and syntactically more
diverse descriptions. This augmentation exposes the model
to a broader range of linguistic variations during train-
ing, thereby improving its ability to consistently interpret
diverse expressions and leading to greater robustness at
test time. As shown in Fig. f} We prompt GPT-4 with
instructions such as: "Given an expression referring to a
specified target: <re-annotation>. Your task is to augment
the expression by using a richer and more varied vocabu-
lary, sentence structures, and descriptions. Ensure that the
refined expression maintains semantic consistency with the
original.” We generate two augmented expressions for each
origin expression. Finally, we obtain 999,092 diverse training
target-expression pairs.

3.5 Dataset Analysis

Our SkyFind dataset consists of 1,015,638 target-expression
pairs across 35,599 images and 352,910 objects. The average
length of the expressions is 27.12 words, and the vocabulary
size is 11,934. We now present a more detailed statistical
analysis as below.

Fig. 5| (a) and (b) show the proportions of different data
sources in the SkyFind dataset, measured respectively by
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Fig. 7: Examples of pre-annotated expressions generated by
large models compared to those re-annotated by humans.

the number of images and the number of annotated objects.
Fig. || (c) reports the expression length distributions of the
training & validation and test sets, with average lengths
of 27.15 and 25.48 words, respectively. Fig. 5| (d) presents
the distributions of the object-to-image area ratio, where
the averages are 0.767% for the training & validation sets
and 0.161% for the test set. Fig. E| (e) provides a T-SNE
visualization of image features, extracted using ResNet-50
from randomly sampled 1,000 training & validation im-
ages and 200 test images. The distinct clusters confirm the
distributional difference between training/validation and
test sets, validating our split strategy. Fig. [5| (f) illustrates
a T-SNE visualization of randomly sampled 1,000 original
expressions of training set and their 2,000 GPT-4-augmented
counterparts, with features extracted by BERT. The aug-
mented data expands the distribution, reflecting greater
lexical and structural diversity while preserving semantic
consistency. Finally, Fig. [f] depicts a word cloud of major
described objects, highlighting the dataset’s broad coverage
and diversity.

3.6 Discussions

Large Models as Pre-Annotation Assistants. In our anno-
tation pipeline, we employ large models (LM) to gener-
ate initial annotations, which are then refined by human
annotators, leading to a substantial reduction in human
annotation cost. The effectiveness of this strategy stems from
the strong generalization ability that LM acquire through
large-scale multi-modal or language pretraining. Neverthe-
less, there remains a non-negligible domain gap between
general-purpose LM and UAV-specific tasks. As a result,
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while model outputs often provide useful reference cues,
they may also contain errors and noise.

Accordingly, we do not directly adopt the raw outputs
of large models as final annotations, since their accuracy is
insufficient for direct use. Instead, they serve as a starting
point for human annotation. The informative parts can be
leveraged by annotators to reduce workload. As shown in
Fig.[7] although LM-generated pre-annotations may contain
noise, they typically provide useful content that can be re-
vised, thereby making the human annotation process more
efficient. This paradigm shifts the human annotation task
from “thinking and authoring” to “judging and editing,”
which substantially lowers cognitive load and reduces anno-
tation time. A comparison between annotating from scratch
and refining pre-annotations shows that the latter achieves
significant time savings, reducing the average annotation
time by 38.8% (from 85 seconds to 52 seconds). The gain in
efficiency mainly arises from this change in workflow, while
the final annotation quality remains unaffected.

We do not fine-tune LMs for UAV-specific tasks for two
main reasons. First, closed-source models such as GPT-4
do not provide fine-tuning access. Second, UAV datasets
are relatively small compared to the scale required for LM
pretraining, making fine-tuning prone to overfitting and loss
of generalization, which may even reduce the amount of
useful information contained in pre-annotations, while also
introducing considerable computational overhead.

In summary, the “LM-based pre-annotation + human re-
finement” paradigm ensures final annotation quality while
markedly reducing human cost, and avoids the access,
overfitting, and computational issues of fine-tuning, thus
offering strong practical value.

Privacy and ethical concerns. Our dataset is constructed
in strict accordance with legal and ethical requirements.
Images obtained from publicly available UAV datasets are
properly cited, while those collected from the internet are
explicitly marked with Creative Commons licenses to en-
sure lawful use and sharing. The image content is carefully
controlled to include only aerial views of natural scenes and
public areas, excluding restricted sites and sensitive facilities
to avoid potential security risks. During the annotation
process, we follow a non-identifiable principle, ensuring
that no sensitive information linked to personal identity
is included; annotations are restricted to general categories
necessary for the intended research tasks. Furthermore, the
dataset will be released under an academic use agreement
that requires strict compliance with privacy and ethical
standards and explicitly prohibits any use for surveillance
or privacy-intrusive purposes.

4 AERIALREC BASELINE FRAMEWORK

Compared with general REC, UAV-based REC poses unique
challenges. In UAV-captured scenes, images are typically
acquired from high-altitude viewpoints, resulting in broad
fields of view with complex backgrounds that contain
numerous objects semantically similar to the target. Such
conditions make localization particularly challenging, as the
model needs to discriminate the referred target from a large
number of distractors. Consequently, existing methods that
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directly regress the target box are prone to background
interference, leading to degraded REC performance.

To address this challenge, we propose a baseline frame-
work termed AerialREC, which formulates target localiza-
tion as a two-step process, as shown in Fig. |8l Unlike existing
methods that directly regress the precise target bounding
box, our framework first introduces a search step, where the
model learns to identify a potential target region. This step
aims to delineate an approximate area of interest, effectively
filtering out substantial irrelevant background interference
and providing a more focused region for subsequent anal-
ysis. In the second step, the model then performs precise
localization within this clearer and less cluttered region,
thereby achieving more accurate predictions. Benefiting
from the guidance of the potential target region identified
in the first step, the target localization is carried out within
a more focused area with reduced background interference,
thereby leading to improved localization accuracy.

To validate the effectiveness of the proposed Aerial-
REC framework, we instantiate it on recent sequence-to-
sequence (seq2seq) REC methods, which represent a main-
stream paradigm in current REC research. Specifically, these
methods cast REC as a sequence modeling problem, where
the coordinates of the target bounding box corners are
generated in an autoregressive manner. A typical seq2seq
REC model consists of four main components: a vision
encoder that extracts visual features f, from images, a text
encoder that extracts textual features f; from expressions,
a transformer encoder that fuses these visual and textual
features, generating the multi-modal features f,,, and a
transformer decoder that successively regresses the entire
coordinate sequence, with each prediction conditioned on
the multi-modal features f,,, and the previously regressed
coordinates. The regressed coordinate sequence is formu-
lated as:

[<BOS>7 {(xzv yi)}z‘2=1’ <EOS>] ) (1)

where {(z;,y;)}?_, represent the coordinates of the target
bounding box top-left and bottom-right corners, (BOS) and
(EOS) are special tokens to indicate the beginning and end
of the sequence.

In our framework, the sequence regression process for
target localization is extended into a two-step formulation.

The extended coordinate sequence is defined as:

[<BOS>7 {(i'lv Qz) 1'2:17 <SEP>7 {(xl’ yl) 12:17 <EOS>] : 2
In the search step, we first regress the coordinates of a poten-

tial target region {(%;, 9;)}?_,, aiming to filter out irrelevant
background and provide a more focused candidate region:

[{(2i,5:)}i=1] = AR([(BOS)], fm), ®)

where AR denotes the autoregressive transformer decoder.
The potential region is not required to precisely align with
the ground-truth bounding box but should encompass the
target. To generate its label, we randomly sample from
enlarged intervals during training:

4)

Ry = [max(0, z1 — aierr), 1] X [max(0,y1 — ayiet), y1], (5)

Tiep = w — (T2 — 1), Yt = b — (Y2 — y1),

Ry = [x2, min(w, zo + aZien)] X [y2, min(h, y2 + ayer)], (6)
)
(8)

where {R;}7 ; denote the enlarged intervals, w and h
denote the width and height of the images, « is a hyper-
parameter that controls the size of the enlarged intervals.
In the next step, we regress the precise bounding box
{(z4,v:)}7_,. By nature, the auto-regressive transformer de-
coder generates each token conditioned on the previously
predicted ones. This property naturally aligns with our
two-step framework: the precise bounding box is regressed
based on the potential target region predicted in the first
step, which serves as a prompt and guidance for the subse-
quent prediction. In this way, the model focuses on a clearer
sub-region with reduced background interference, thereby
improving localization accuracy.

[{(zi,y:)}iz1) = AR([(BOS), { (&, 9:) }i1, (SEP)], fm), (9)

where (SEP) is a newly added special token that indicates
the transition between the two steps. During inference, the
coordinates obtained from the second step are used as the
final target bounding box.

(Z1,91) ~ RandomSample(R;),
(&2, 92) ~ RandomSample(Rs),

Theoretical Justification. Beyond the intuitive explanation,
we provide a theoretical perspective from the viewpoint
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of optimization to understand the effectiveness of the pro-
posed two-stage framework.

Instead of directly regressing the precise target bound-
ing box (PTBB), we introduce an intermediate objective:
identifying a potential target region (PTR). Supervision is
provided by coarse boxes b. sampled from an expanded
region B(b*) of the ground-truth b*. The two-stage losses
are defined as:

Lpres(b) = d(b,0*), Lprr(D) = Ey_~5(-) d(b, be),

where d(-,-) denotes a distance metric. Since b, is sampled
from B(b*), this is equivalent to optimizing over a distribu-
tional perturbation around b*. Let this induced distribution
be denoted as v(e), such that b. = b* + ¢, € ~ v. The PTR
loss can then be expressed as:

(10)

Lom(b) = / d(b, b + €) v(c) de = (Lorgs +2)(b), (1)
where “x” denotes convolution. Since convolution with a
distribution corresponds to taking a weighted average of
shifted copies of the original function, it naturally smooths
out sharp variations. This formulation shows that Lprg is
essentially a smoothed version of Lprgp: the sharp uni-
modal structure of Lprpg centered at b* is expanded into
a broader and smoother basin of attraction. The smoothing
effect provides informative gradients over a wider region,
mitigating the risk of suboptimal local minima.

Based on this, the proposed two-stage framework
can be interpreted through the lens of the continuation
method [80], [81]. In general, continuation introduces a
family of objective functions that gradually transition from
a simplified surrogate to the exact target objective:

£A(b) - (1 - )\) . ‘ccoarse(b) + A ACfine(b)a

where A controls the degree of transition. The benefit of
this strategy lies in its ability to optimize a smoother and
easier objective at the early stage of training, thereby allevi-
ating the risk of being trapped in poor local minima and
providing a stable convergence path for optimization. In
our framework, the first step leverages coarse supervision
to optimize toward the vicinity of the ground truth, while
the second stage employs fine supervision to refine pre-
dictions for accurate localization. Throughout this process,
the smoother loss landscape induced by coarse supervision
helps steer optimization into the correct region, whereas fine
supervision ensures precise alignment with the target.

Furthermore, our framework is conceptually consistent
with the principle of Curriculum Learning (CL) [82], [83]. CL
advocates training in an easy-to-difficult order, starting with
simplified objectives and gradually progressing to more
challenging ones. In our case, we adopt a similar philosophy
by guiding the model to learn from a simpler objective
(PTR) to a more complex one (PTBB), which helps improve
performance on the final task.

Aeo,1], (12)

Discussion. Regarding the use of random sampling rather
than fixed values for generating PTR labels. From the opti-
mization perspective discussed earlier, the surrogate objec-
tive induced by fixed values remains a single deterministic
target and therefore does not alleviate the intrinsic difficulty
of optimization; the loss landscape around that target stays
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steep and narrow. By contrast, random sampling injects dis-
tributional perturbations around the ground truth and turns
the objective from a point-wise one into distributional risk
minimization, which is equivalent to convolving the original
loss with the perturbation distribution. This convolution
smooths the loss surface, lowers the optimization difficulty,
and yields a more stable training trajectory.

Regarding whether decomposing localization into more
steps can improve performance, this should be discussed
in the context of the auto-regressive structure. In training,
teacher forcing ensures that each decoding step receives
ground-truth input. At inference, however, student forcing
requires the model to condition on its own previous pre-
dictions, making later steps dependent on the accuracy of
earlier ones. As the number of steps increases, prediction
errors will be propagated and amplified, impairing local-
ization accuracy. Our two-step design provides a practical
trade-off, and introducing additional steps is unlikely to
yield further benefits and may instead degrade performance
due to compounding errors.

5 EXPERIMENTS
5.1

In the process of generating pre-annotations with the
assistance of large models, we utilize CogVLM [52]
(CogVLM-grounding-generalist-v1.1-17B) for basic descrip-
tions, LLaVA [53] (LLaVA-1.5-13B) for detailed descriptions,
and GPT-4 (GPT-4-turbo) for concise descriptions and aug-
mented expressions. For evaluation metrics, we use the
standard IoU@0.5. Additionally, we introduce loU@mean, a
weighted average calculated across intervals from IoU@0.5
to IoU@0.9 in steps of 0.1, to better highlight the perfor-
mance of precise target localization. The hyper-parameter «
is set to 0.4 for our AerialREC baseline.

Implementation Details

5.2 Benchmark Results

On the proposed SkyFind dataset, we select ten representa-
tive and publicly available REC methods to establish bench-
mark results, including FAOA [35], RSC [43], RefTR [44],
TransVG [45], VGTR [48], VLVTG [49], SeqTR [47], QRNet
[46], SImREC [51], and PolyFormer [50]. We train and eval-
uate all the above methods on the SkyFind dataset using the
official implementations and training configurations. When
pretraining is involved, we adopt the officially released
pretrained weights. As shown in Table @, PolyFormer and
SeqTR achieve the top two overall performances. On the in-
domain validation set, their IoU@0.5 scores reach 42.84 and
37.94, respectively; on the cross-domain test set, the scores
reach to 31.01 and 25.74. Nevertheless, compared with their
results on general REC benchmarks such as RefCOCO,
RefCOCOg, and RefCOCO+, these numbers remain consid-
erably lower. This demonstrates that UAV scenarios intro-
duce substantial challenges to existing REC methods, high-
lighting the necessity of designing customized approaches
tailored to this domain.

We further validate the effectiveness of the proposed
AerialREC baseline framework in tackling the challenge of
abundant background interference in UAV-based REC. The
framework is instantiated on SeqTR and PolyFormer, two
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TABLE 4: Benchmark results of 10 representative REC methods on our SkyFind validation and test sets. For the proposed
AerialREC framework, we evaluate its effectiveness using two recent seq2seq REC methods, SeqTR and PolyFormer,
denoted as AerialRECt and AerialREC<), respectively. The gray-highlighted rows present the comparison between the
original performance and the results after incorporating our AerialREC framework, making the differences clearer.

SkyFind Val SkyFind Test Average
Method Visual Feature Text Feature
IoU@0.5 IoU@mean IoU@0.5 IoU@mean IoU@0.5 IoU@mean

FAOA \I DarkNet-53 BERT 23.10 10.21 13.08 6.91 18.09 8.56
RSC IEI DarkNet-53 BERT 29.61 16.38 17.59 9.01 23.60 12.70
RefT ResNet-101 BERT 31.22 15.80 22.68 13.46 26.95 14.63
TransV ResNet-101 BERT 35.49 20.56 22.00 11.90 28.75 16.23
VGTR \I ResNet-101 LSTM 35.30 21.99 20.16 10.55 27.73 16.27
VLVT! ResNet-101 BERT 30.29 14.40 23.52 13.32 26.91 13.86
SeqTR IW\ DarkNet-53 GRU 37.49 24.45 25.74 12.57 31.62 18.51
QRNet | Swin-S BERT 33.90 22.10 26.21 11.22 30.06 16.66
SimRE CSPDarkNet-53 LSTM 31.17 22.09 21.50 12.15 26.34 17.12
PolyFormer Swin-B BERT 42.84 25.50 31.01 16.44 36.93 20.97
AerialRECt DarkNet-53 GRU 42.95 28.06 32.13 18.00 37.54 23.03
AerialREC Swin-B LSTM 45.21 29.78 38.13 20.38 41.67 25.08

Expression: A person sitting on a wooden deck near the water’s edge with legs

AerialRECT

SeqTR

Expression: The person wearing an orange shirt and black pants, standing in
the top-left corner of the image.

AerialRECO

PolyFormer

Fig. 9: Qualitative comparison of methods with vs. without the proposed AerialREC framework. Green boxes denote the
ground truth, blue boxes represent the potential target region predicted by AerialREC in the initial search step, and red

boxes indicate the localization results.

representative sequence-to-sequence REC models, denoted
as AerialRECT and AerialREC<), respectively. Experimental
results show that, compared with SeqTR, AerialREC} im-
proves IoU@0.5 by 5.35 and 3.61 and IoU@mean by 6.39 and
5.43 on the validation and test sets. Similarly, compared with
PolyFormer, AerialREC$ achieves gains of 2.37 and 4.28 in
IoU@0.5 and 7.12 and 3.94 in IoU@mean on the validation
and test sets. These results clearly shows that the proposed
two-step localization framework effectively improves target
localization accuracy in complex UAV-captured scenes with
strong background interference. Moreover, the qualitative
comparisons in Fig. [J] further reveal the mechanism of our
framework. In the first step, the model leverages high-
level referential cues in the expression to narrow down a
coarse region. In the second step, fine-grained details are
used to distinguish the target and accurately localize it. This
two-stage process effectively alleviates confusion caused by
salient and similar non-target entities in UAV imagery.

5.3 Ablation Studies

Framework Design. As shown in Table 5, We conduct a
systematic ablation study to assess the effectiveness of key
components in the two-step localization framework, includ-
ing the introduction of the special token (SEP), the form
of supervision applied in the first-step search, and whether
extending localization to more steps yields additional ben-
efits. Our analysis shows that random sampling (RS) of the

potential target region during the first-step supervision is
essential for the effectiveness of the two-step framework:

(21,91) ~ RS(R1), (&2, 92) ~ RS(Ry). (13)

In contrast, fixed-value strategies do not yield noticeable
improvements. For example, the innermost case, where the
potential region exactly matches the ground-truth box:

(T1,91) = (x1,91),  (D2,92) = (x2,¥2), (14)

or the outermost case, where the region is deterministically
expanded to its maximum:

(Z1,91) = (max(0, 1 — azien), max(0, y1 — aYierr)), (15)

(%2, 92) = (min(w, 22 + AXright), min(h, y2 + WYrignt) ), (16)

do not bring significant gains. This observation is consistent
with our theoretical analysis: using fixed values essentially
reduces the task to point-wise regression, which neither
smooths the loss nor eases optimization. In contrast, random
sampling transforms the objective into distributional risk
minimization, equivalent to convolving the original loss
with the perturbation distribution. This operation smooths
the loss surface, lowers optimization difficulty, and yields
a more stable training trajectory. Moreover, introducing
the special token (SEP) between the two regression steps
further boosts performance by explicitly distinguishing the
two stages and providing a clear modeling cue. Finally,
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Origin: The person wearing a red life jacket on
the far right of the boat, standing under the red
sunshade and holding onto the rectangular sliver
structure on the boat.

structure.

Version 1: At the far right end of the boat sits a
person in a red safety jacket, just below the red
shade, keeping one hand on the rectangular silver

Version 2: The person positioned at the far-right
edge of the boat, under the red cover, holding the
silver rectangular structure, and wearing a red life
vest.

Fig. 11: Failure cases of the model trained without GPT-4 augmentation, where variations in expression style (e.g., word
order or word choice) mislead the model and result in incorrect localization.

TABLE 5: Effect of components in constructing the extended
regressed coordinate sequence. ‘Fixed (inner)’ uses the in-
nermost value to match the target box precisely, while "Fixed
(outer)” extends the region to its maximum range.

SkyFind Test
Ablation  Two-step (SEP) Strategy

IoU@0.5 ToU@mean

— 25.74 12.57

v RandomSample 31.01 17.64

v v Fixed (inner) 26.06 12.60

AerialRECt v v Fixed (outer) 26.78 13.01

v v RandomSample 32.13 18.00

Three-step v*  RandomSample 31.12 16.44

Four-step v°  RandomSample 28.74 15.61

— 31.01 16.44

v RandomSample 37.56 19.88

v v Fixed (inner) 32.11 16.81

AerialREC< v v Fixed (outer) 33.89 17.02

v v" RandomSample 38.13 20.38

Three-step v*  RandomSample 38.01 19.55

Four-step v* RandomSample 34.31 17.10

extending localization beyond two steps with repeated en-
largement and random sampling does not lead to additional
benefits. Instead, performance degrades due to the auto-
regressive nature of the framework, where student-forcing
during inference accumulates and amplifies errors, thereby
reducing localization accuracy.

Data Scale. In this work, we construct a large-scale dataset,
SkyFind, which contains over one million target expres-
sions. To analyze the effect of dataset scale, we conduct

experiments using subsets of 10%, 20%, 50%, and the full
dataset, and report the corresponding performance on the
test set. As shown in Fig. (a), model performance con-
sistently improves as the dataset size increases, but the
marginal gains gradually diminish and approach saturation.
This indicates that, while further expansion may still bring
additional improvements, the current scale of SkyFind is al-
ready sufficient to support effective training and evaluation.

Hyper-parameter o. We investigate the impact of varying
the hyper-parameter o on model performance. As shown in
Fig. |10 (b), a smaller « forces the model to search within a
relatively small area, which does not substantially alleviate
the task difficulty. Conversely, a larger o results in overly
broad search areas, which fails to effectively prompt the
second refinement step for precise localization. An « value
of 0.4 yields the optimal performance.

Impact of GPT-4 Training Augmentation. We employ GPT-
4 to augment the expressions in the training set, expos-
ing the model to a broader range of linguistic variations
during training and thereby enhancing its robustness in
understanding diverse expressions at test time. To verify the
effectiveness of this augmentation, we design two training
settings: using only the original training set and using the
augmented training set. To ensure a fair comparison with
the same number of training iterations, in the augmented
setting we sample one expression per target from the pool
of original and augmented expressions, so that the effective
training set size matches that of the original-only setting.
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Expression: A silver sedan parked near the bottom-left corner of the image, close to some greenery.

Results X1, Y1)

(X2,¥2)

(*1,51) (x2,52)

Fig. 12: The cross-attention maps of the decoder when generating each new vertex token, using AerialREC< for illustration.
The green box denotes the ground truth, the blue box indicates the potential target region (;, gi)le predicted in the initial
search step, and the red box shows the precise target bounding box (x;, yi)?zl predicted in the refine step.

TABLE 6: Zero-shot performance of 12 large-scale vision-
language pretrained large models on the SkyFind test set.

SkyFind Test
Method Visual Feature Text Feature
IoU@0.5 IoU@mean

OFA ResNet-152 — 13.01 6.14
OBE-PEACE [59] — — 11.03 6.56
Grounding-DINO Swin-B BERT 15.16 8.25
UNINEXT ConvNeXt-L BERT 12.70 7.40
Sphinx | Mixed LLaMA 13.54 10.22
Shikra | OpenCLIP-L Vicuna 14.95 11.85
Qwen-VL OpenCLIP-G  Qwen 1711 1278
MiniGPT-V2 \@ EVA-CLIP-G LLaMA 18.80 13.64
Ferret | CLIP-L Vicuna 16.02 11.63
GLEE | EVA02-CLIP-L CLIP 14.09 12.11
LLaVA | OpenCLIP-L Vicuna 19.12 15.75
CogVLM | EVA02-CLIP-E = LLaMA 23.67 16.99

For evaluation, we report performance on the validation
and test sets, and additionally construct val-diverse and
test-diverse by manually writing two extra expressions for
each sample to simulate different expression styles. We then
evaluate both models on val, val-diverse, test, and test-
diverse (see Fig. (c)). Experimental results show that,
compared with performance on val and test, the model
trained on the original set exhibits a larger drop on val-
diverse and test-diverse, whereas the model trained with
GPT-4 augmentation remains substantially robust under
such variations. We further conduct a qualitative analy-
sis of failure cases (see Fig. [[1). Differences in expression
style, such as altering word order (e.g., placing the spatial
relation to “the boat” at the beginning) or word choice
(e.g., replacing sit with position), directly mislead the model
trained without augmentation. In the first case, the mention
of “boat” at the beginning draws the model’s attention
prematurely to the wrong entity, causing it to ignore the
subsequent discriminative description. In the second case,
replacing sit with position weakens the specificity of the
expression, leading the model to confuse the target with
another person. In contrast, the augmented model remains
robust to such variations, verifying both the effectiveness
and necessity of GPT-4 augmentation.

Visualization of Attention Map. Here, we visualize the
cross-attention maps (averaged across all layers and heads)
during the regression of each new vertex token, as shown
in Fig. In the search step, the model predicts the po-
tential target region, (;fcl-,:t}i)f:l, with attention primarily

distributed over the broader area containing the specified
car. In the subsequent refine step, guided by the narrowed
candidate region, the model produces more accurate pre-
dictions, (mi,yi)le, with attention now concentrated on
the black car. These visualizations demonstrate that beyond
the output results, the model internally learns a two-stage
mechanism, first focusing on a coarse region and then
refining to precisely localize the target.

Evaluation on Large Models. Recent advances in large-
scale vision-language pretraining have given rise to a se-
ries of powerful large models with strong generalization
ability across diverse multi-modal tasks. These models are
equipped with highly capable visual and textual feature
extractors and are trained on hundreds of millions to billions
of image—-text pairs, thereby achieving remarkable zero-shot
performance on many established benchmarks, including
REC. Motivated by this, we extend our evaluation to 12
representative vision-language models: OFA [84], ONE-
PEACE [59], Grounding-DINO [61], UNINEXT [56], Sphinx
[57], Shikra [58], Qwen-VL [85], MiniGPT-V2 [60], Ferret
[55], GLEE [54], LLaVA [53]], and CogVLM [52]. We perform
zero-shot evaluation on the SkyFind test set to examine
whether their generalization ability transfers to the newly
introduced UAV-based REC setting, following the official
evaluation codes and released weights. As reported in
Table @ the results are unsatisfactory, with most models
achieving IoU@0.5 scores below 20. This outcome under-
scores the distinctive challenges inherent to UAV-based REC
and highlights the limitations of existing large models in this
setting. At the same time, it also shows the value of SkyFind
dataset: incorporating SkyFind into the pretraining process
has the potential to enhance the generalization ability of
large models in aerial scenarios.

6 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we formally introduce UAV-
based referring expression comprehension (REC) as a new
research problem and analyze its unique challenges, includ-
ing abundant background interference, small target size,
and complex referring relations. To support systematic re-
search in this direction, we construct SkyFind, a large-scale
dataset with one million high-quality target—expression
pairs. Furthermore, we propose AerialREC, a baseline
framework that addresses the inherent difficulties of UAV-
based REC by introducing a two-step localization process
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to reduce background interference. Comprehensive experi-
ments on SkyFind establish the benchmark and validate the
effectiveness of AerialREC, while also revealing substantial
room for future improvement. We hope that SkyFind and
AerialREC can serve as strong foundations and catalysts for
advancing research in human-UAV interaction.

Future Work. Building on the existing work presented in
this paper, there are several promising directions for future
research, primarily from the perspectives of both dataset
and method. We highlight them as follows:

(1) Video-based Dataset. The proposed SkyFind dataset is
built on image data, which offers several advantages for
UAV platforms. First, image-based processing is well-suited
for UAV edge devices due to common challenges such as
limited storage capacity, restricted bandwidth, and high
energy consumption [86], [87]. Real-time processing of high-
resolution video streams can heavily strain these resources,
whereas image-based approaches make more efficient use
of them. Second, image-based processing is better aligned
with UAV tasks that require rapid response and infer-
ence [88]-[90]. In urgent scenarios, swift decision-making
is paramount, and image-based processing provides imme-
diate analysis, enabling UAV to promptly execute critical
missions. However, video-based processing holds potential
advantages in certain contexts. When ample resources such
as storage, bandwidth, and energy are available, video-
based approaches offer richer temporal information and a
more comprehensive context for the SkyFind task. Thus,
future work may explore efficient methods to construct a
video-based dataset while maintaining temporal and se-
mantic coherence in the referring expressions.

(2) Tailored REC Methods for UAV. The introduction of
AerialREC as a baseline framework represents a starting
point for advancing REC methods in aerial scenarios. Build-
ing on this, several promising research directions emerge. A
critical area is boosting the computational efficiency of REC
methods. Given the resource constraints of UAV platforms,
such as limited processing power, energy, and bandwidth,
developing lightweight, high-performance models is essen-
tial for real-time localization and decision-making. Future
research should focus on optimizing algorithms to balance
accuracy with speed and resource efficiency. Finally, multi-
turn interactions between users and UAV offer a powerful
approach to refining REC task. In complex environments, a
single referring expression may not suffice. Enabling UAV to
engage in dialogues, asking clarifying questions or seeking
additional information, could reduce errors and improve
understanding, further enhancing accuracy and usability.
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